11.己知雙曲線C的兩個焦點分別為F1(-$\sqrt{3}$,0)、F2($\sqrt{3}$,0),漸近線方程為y=±$\sqrt{2}$x.
(1)求雙曲線C的方程;
(2)若過點F1(-$\sqrt{3}$,0)的直線l與雙曲線C的左支有兩個交點,且點M(0,1)到l的距離小于1,求直線l的傾斜角的范圍.

分析 (1)由題意設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),利用雙曲線C的兩個焦點分別為F1(-$\sqrt{3}$,0)、F2($\sqrt{3}$,0),漸近線方程為y=±$\sqrt{2}$x,可得c=$\sqrt{3}$,$\frac{a}$=$\sqrt{2}$,即可求雙曲線C的方程;
(2)利用過點F1(-$\sqrt{3}$,0)的直線l與雙曲線C的左支有兩個交點,得出k>-$\sqrt{2}$或k>$\sqrt{2}$.點M(0,1)到l的距離小于1,得出$\frac{|-1+\sqrt{3}k|}{\sqrt{{k}^{2}+1}}$<1,求出k的范圍,即可求直線l的傾斜角的范圍.

解答 解:(1)由題意設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),
∵雙曲線C的兩個焦點分別為F1(-$\sqrt{3}$,0)、F2($\sqrt{3}$,0),漸近線方程為y=±$\sqrt{2}$x,
∴c=$\sqrt{3}$,$\frac{a}$=$\sqrt{2}$,
∴a=1,b=$\sqrt{2}$,
∴雙曲線C的方程${x}^{2}-\frac{{y}^{2}}{2}=1$;
(2)設(shè)直線方程為y=k(x+$\sqrt{3}$),
∵過點F1(-$\sqrt{3}$,0)的直線l與雙曲線C的左支有兩個交點,
∴k>-$\sqrt{2}$或k>$\sqrt{2}$.
∵點M(0,1)到l的距離小于1,
∴$\frac{|-1+\sqrt{3}k|}{\sqrt{{k}^{2}+1}}$<1,
∴0<k$<\sqrt{3}$,
∴$\sqrt{2}<k<\sqrt{3}$,
∴直線l的傾斜角的范圍是(arctan$\sqrt{2}$,$\frac{π}{3}$).

點評 本題考查雙曲線的方程,考查直線與雙曲線的位置關(guān)系,考查直線的傾斜角與斜率,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知△ABC的三個頂點坐標(biāo)分別為A(2,4),B(0,-2),C(-2,3),
(1)求BC邊上的中線與BC邊上的高所在的直線方程
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=ax2-1,a為一個正數(shù),且f[f(-1)]=-1,那么a的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1=1的兩個焦點為F1,F(xiàn)2.在左支上過點F1的弦AB長為2,求△ABF2的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.化簡:sin2α•sin2β+cos2α•cos2β-$\frac{1}{2}$cos2α•cos2β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=$\frac{1-2{x}^{2}}{1+2{x}^{2}}$的值域是(-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.學(xué)了異面直線的概念和作法后,老師出了下面一道題:“已知平面α,β,直線a,b為異面直線,a?α,b?β,α∩β=c,請問:直線c與直線a,b有怎樣的位置關(guān)系?”甲、乙、丙、丁四位同學(xué)給出了四種不同的答案,甲:c與a,b都不相交;乙:c與a,b都相交;丙:c至少與a,b中的一條相交;。篶至多與a,b中的一條相交.問:他們的答案中哪些是正確的?哪些是錯誤的?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在三棱錐V-ABC中,D、E、F分別是VA、VB、VC上的點并且$\frac{AD}{AV}$=$\frac{AE}{AC}$=$\frac{VF}{VB}$=$\frac{CG}{CB}$=$\frac{1}{3}$.求證:直線DF、EG、AB共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.分別作出函數(shù)①y=-3x+1,②y=x2+2x的圖象,并根據(jù)圖象回答以下兩個問題:
(1)以上兩個函數(shù)有無最大值或最小值?如果有,請求出.
(2)以上兩個函數(shù)在(-∞,+∞)上是否是單調(diào)函數(shù)?如果不是,請說出它的變化趨勢.

查看答案和解析>>

同步練習(xí)冊答案