3.已知對數(shù)函數(shù)f(x)=logax(a>0,且a≠1)的圖象經(jīng)過點(4,2).
(1)求實數(shù)a的值;
(2)如果f(x+1)<0,求實數(shù)x的取值范圍.

分析 (1)根據(jù)loga4=2,求出a的值即可;
(2)根據(jù)函數(shù)的單調(diào)性問題轉(zhuǎn)化為關(guān)于x的不等式組,解出即可.

解答 解:(1)因為loga4=2,所以a2=4,
因為a>0,所以a=2.                           
(2)因為f(x+1)<0,
也就是log2(x+1)<0,
所以log2(x+1)<log21,
所以$\left\{\begin{array}{l}x+1>0\\ x+1<1\end{array}\right.$,
所以-1<x<0,
所以實數(shù)x的取值范圍是{x|-1<x<0}.

點評 本題考查了對數(shù)函數(shù)的性質(zhì)以及函數(shù)的單調(diào)性問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.溫江某農(nóng)戶計劃種植蒜臺和花菜,種植面積不超過50畝,投入資金不超過54萬元,假設(shè)種植蒜臺和菜花的產(chǎn)量、成本和價格如表所示:
 年產(chǎn)量/畝年種植成本/畝 每噸售價 
 蒜臺 4噸 1.2萬元 0.55萬元
 花菜6噸  0.9萬元 0.3萬元
那么一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大為( 。
A.50萬B.48萬C.47萬D.45萬

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2-2ax+1+b(a>0)在區(qū)間[0,3]上有最大值5和最小值1.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若存在x∈[-1,3]使得方程|f(x)-2x|=t2-2t-8有解,求實數(shù)t的取值范圍;
(Ⅲ)設(shè)$g(x)=\frac{f(x)}{x}$,若$g({2^x})+k•\frac{2}{2^x}-k≥0$在x∈[1,2]上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角是120°,且|$\overrightarrow{a}$|=5,|$\overrightarrow$|=4,則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.20B.10C.-10D.-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,1),則|2$\overrightarrow{a}$+$\overrightarrow$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.過點(-1,2)且和直線3x+2y-7=0垂直的直線方程是2x-3y+8=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}\frac{1}{x^2},x<1\\{log_2}({x+4}),x≥1\end{array}$,則$f(f(\frac{1}{2}))$=( 。
A.2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知梯形ABCD是直角梯形,按照斜二測畫法畫出它的直觀圖A′B′C′D′(如圖所示),其中A′D′=2,B′C′=4,A′B′=1,則直角梯形DC邊的長度是( 。
A.$\sqrt{5}$B.$2\sqrt{2}$C.$2\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年湖北省仙桃市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

完成一項裝修工程,請木工共需付工資每人500元,請瓦工共需付工資每人400元,現(xiàn)有工人工資預(yù)算20000元,設(shè)木工人,瓦工人,則工人滿足的關(guān)系式是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案