6.f(n)=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2n+1}(n∈{N^+})$,則f(1)=( 。
A.1B.$\frac{1}{3}$C.$1+\frac{1}{2}+\frac{1}{3}$D.都不正確

分析 利用代入法直接求解.

解答 解:∵f(n)=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2n+1}(n∈{N^+})$,
∴f(1)=1+$\frac{1}{2}+\frac{1}{3}$.
故選:C.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若復(fù)數(shù)z=(1+i)(x+i)(x∈R且i為虛數(shù)單位)為純虛數(shù),則|z|等于( 。
A.2B.$\sqrt{5}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z=a+bi,(a,b∈R),則復(fù)數(shù)z的虛部為( 。
A.aB.bC.biD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x-1|.
(1)解不等式,f(x)+f(x+3)≤4;
(2)若a>0,求證:f(ax)+af(x)≥f(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知△ABC三邊所在直線方程:lAB:3x-2y+6=0,lAC:2x+3y-22=0,lBC:3x+4y-m=0(m∈R,m≠30).
(1)判斷△ABC的形狀;
(2)當(dāng)BC邊上的高為1時,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分別為AB,AC中點(diǎn).
(1)求證:DE∥平面PBC;
(2)求證:AB⊥PE;
(3)求三棱錐P-BEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)已知x<-2,求函數(shù)$y=2x+\frac{1}{x+2}$的最大值.
(2)若實(shí)數(shù)x、y滿足x2+y2+xy=1,求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)解不等式$\frac{x+5}{{{{(x-1)}^2}}}>2$;
(2)若不等式kx2-2x+6k<0(k≠0)的解集為R,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等差數(shù)列{an}中,a3,a7是方程x2-8x+9=0的兩個根,則a5等于( 。
A.-3B.4C.-4D.3

查看答案和解析>>

同步練習(xí)冊答案