A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{1}{3}$ |
分析 由已知易得AC⊥OD,AC⊥PO,可證面POD⊥平面PAC,由平面垂直的性質(zhì)考慮在平面POD中過O作OH⊥PD于H,則OH⊥平面PAC,∠OCH是直線OC和平面PAC所成的角,在Rt△OHC中,求解即可.
解答 解:因為OA=OC,D是AC的中點,所以AC⊥OD,
又PO⊥底面⊙O,AC?底面⊙O,
所以AC⊥PO,而OD,PO是平面內(nèi)的兩條相交直線
所以AC⊥平面POD,又AC?平面PAC
所以平面POD⊥平面PAC
在平面POD中,過O作OH⊥PD于H,則OH⊥平面PAC
連接CH,則CH是OC在平面上的射影,所以∠OCH是直線OC和平面PAC所成的角
在Rt△ODA中,OD=DA•sin30°=$\frac{1}{2}$,
在Rt△POD中,OH=$\frac{\sqrt{2}×\frac{1}{2}}{\sqrt{2+\frac{1}{4}}}$=$\frac{\sqrt{2}}{3}$,
在Rt△OHC中,sin∠OCH=$\frac{\sqrt{2}}{3}$,
故直線OC和平面PAC所成的角的正弦值為$\frac{\sqrt{2}}{3}$.
故選C.
點評 本題主要考查了直線與平面垂直的判定定理的應(yīng)用,空間直線與平面所成角的求解,考查了運算推理的能力及空間想象的能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -3 | C. | 253 | D. | 126 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {-1,0} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com