分析 (1)連接AG并延長交PD于H,連接CH,由重心性質(zhì)結(jié)合已知可得$\frac{AG}{GH}=\frac{AF}{FC}$,再由平行線截線段成比例可得GF∥HC.由線面平行的判定可得GF∥平面PDC;
(2)由已知證明PE⊥平面ABCD,以E為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,結(jié)合AB=$2DC=2\sqrt{3}$,可得所用點(diǎn)的坐標(biāo),求出兩個(gè)平面PAB、AGC的一個(gè)法向量,由兩法向量所成角得余弦值可得平面AGC與平面PAB所成銳二面角的正切值.
解答 (1)證明:連接AG并延長交PD于H,連接CH,
由于ABCD為梯形,AB∥CD且AB=2DC,知$\frac{AF}{FC}=2$,
又G為△PAD的重心,∴$\frac{AG}{GH}=2$,
在△AHC中,∵$\frac{AG}{GH}=\frac{AF}{FC}$,∴GF∥HC.
又HC?平面PCD,GF?平面PCD,
∴GF∥平面PDC;
(2)解:∵平面PAD⊥平面ABCD,
△PAD與△ABD均為正三角形,延長PG交AD的中點(diǎn)E,
連接BE,∴PE⊥AD,BE⊥AD,則PE⊥平面ABCD,
以E為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,
∵AB=$2DC=2\sqrt{3}$.
∴A($\sqrt{3}$,0,0),P(0,0,3),B(0,3,0),
D($-\sqrt{3}$,0,0),G(0,0,1),
∴$\overrightarrow{AG}=(-\sqrt{3},0,1)$,$\overrightarrow{AB}=(-\sqrt{3},3,0)$,$\overrightarrow{AP}=(-\sqrt{3},0,3)$.
設(shè)C(x0,y0,z0),
∵$\overrightarrow{DC}=\frac{1}{2}\overrightarrow{AB}$,∴$({x}_{0}+\sqrt{3},{y}_{0},{z}_{0})=\frac{1}{2}(-\sqrt{3},3,0)$,
可得${x}_{0}=-\frac{3\sqrt{3}}{2}$,${y}_{0}=\frac{3}{2}$,z0=0,∴C($-\frac{3\sqrt{3}}{2},\frac{3}{2},0$).
∴$\overrightarrow{AC}=(-\frac{5\sqrt{3}}{2},\frac{3}{2},0)$.
設(shè)平面PAB的一個(gè)法向量為$\overrightarrow{m}=(x,y,z)$.
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=-\sqrt{3}x+3y=0}\\{\overrightarrow{m}•\overrightarrow{AP}=-\sqrt{3}x+3z=0}\end{array}\right.$,取z=1,可得$\overrightarrow{m}=(\sqrt{3},1,1)$.
同理可得平面AGC的一個(gè)法向量$\overrightarrow{n}=(\sqrt{3},5,3)$.
∵cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}=\frac{3+5+3}{\sqrt{5}×\sqrt{37}}=\frac{11\sqrt{185}}{185}$.
∴sin<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{8\sqrt{185}}{185}$.
則平面AGC與平面PAB所成銳二面角的正切值為$\frac{8}{11}$.
點(diǎn)評(píng) 本題考查直線與平面平行的判定,考查空間想象能力和思維能力,訓(xùn)練了利用空間向量求解二面角的平面角,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,+∞) | B. | (-∞,3) | C. | (0,3) | D. | (-1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-\frac{2}{3},-\frac{4}{e^2}]$ | B. | $[-\frac{2}{e},2e]$ | C. | $[-\frac{4}{e^2},2e]$ | D. | $[-\frac{4}{e^2},+∞]$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com