18.已知函數(shù)$f(x)=2lnx(\frac{1}{e}≤x≤{e^2})$,g(x)=mx+2,若f(x)與g(x)的圖象上存在關(guān)于直線y=1對稱的點,則實數(shù)m的取值范圍是(  )
A.$[-\frac{2}{3},-\frac{4}{e^2}]$B.$[-\frac{2}{e},2e]$C.$[-\frac{4}{e^2},2e]$D.$[-\frac{4}{e^2},+∞]$

分析 求出g(x)關(guān)于直線y=1的對稱函數(shù)h(x),令f(x)與h(x)的圖象有交點得出m的范圍.

解答 解:g(x)=mx+2關(guān)于直線y=1對稱的直線為y=-mx,
∴直線y=-mx與y=2lnx在[$\frac{1}{e}$,e2]上有交點.
作出y=-mx與y=2lnx的函數(shù)圖象,如圖所示:

若直線y=-mx經(jīng)過點($\frac{1}{e}$,-2),則m=2e,
若直線y=-mx與y=2lnx相切,設(shè)切點為(x,y).
則$\left\{\begin{array}{l}{y=-mx}\\{y=2lnx}\\{\frac{2}{x}=-m}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=e}\\{y=2}\\{m=-\frac{2}{e}}\end{array}\right.$.
∴-$\frac{2}{e}$≤m≤2e.
故選B.

點評 本題考查了函數(shù)零點與函數(shù)圖象的關(guān)系,導(dǎo)數(shù)的幾何意義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖.四棱錐P-ABCD中.平而PAD⊥平而ABCD,底而ABCD為梯形.AB∥CD,AB=
2DC=2$\sqrt{3}$,AC∩BD=F,且△PAD與△ABD均為正三角形,G為△PAD的重心.
(1)求證:GF∥平面PDC;
(2)求平面AGC與平面PAB所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={0,1,2},B={y|y=2x},則A∩B=( 。
A.{0,1,2}B.{1,2}C.{1,2,4}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2}$)的圖象如圖所示,將f(x)的圖象向右平移m個單位得到g(x)的圖象關(guān)于y軸對稱,則正數(shù)m的最小值為( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x是實數(shù),i是虛數(shù)單位,且(1+xi)(x-i)=-i,則x=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=ex-1-a(x+1),g(x)=lnx.
(1)求g(x)在點(1,0)處的切線;
(2)討論f(x)的單調(diào)性;
(3)當(dāng)$a=\frac{1}{2}$,x∈(1,+∞)時,求證:f(x)>(x-1)g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)z=-i(1+2i)的共軛復(fù)數(shù)為(  )
A.2+iB.2-iC.-2+iD.-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時,求f(x)的極值,并證明f(x)>g(x)+$\frac{1}{2}$,x∈(0,e]恒成立;
(2)是否存在實數(shù)a,使f(x)的最小值為3?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.小明在花店定了一束鮮花,花店承諾將在第二天旱上7:30~8:30之間將鮮花送到小明家,若小明第二天離開家去公司上班的時間在早上8:00~9:00之間,則小明在離開家之前能收到這束鮮花的概率是( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

同步練習(xí)冊答案