7.已知命題p:?x∈R,2x>x2,命題q:?x0∈R,x0-2>0,則下列命題中為真命題的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

分析 先判定復(fù)合命題p,q的真假,再利用復(fù)合命題真假的判定方法即可得出.

解答 解:命題p:?x∈R,2x>x2,是假命題,例如取x=2.
命題q:?x0∈R,x0-2>0,例如取x0=3,是真命題;
則下列命題中為真命題的是q∧(¬p).
故選:B.

點(diǎn)評(píng) 本題考查了簡(jiǎn)易邏輯的判定方法、函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,拋物線C:x2=2py(p>0)的焦點(diǎn)為F(0,1),取垂直于y軸的直線與拋物線交于不同的兩點(diǎn)P1,P2,過(guò)P1,P2作圓心為Q的圓,使拋物線上其余點(diǎn)均在圓外,且P1Q⊥P2Q.
(1)求拋物線C和圓Q的方程;
(2)過(guò)點(diǎn)F作傾斜角為θ($\frac{π}{6}$≤θ≤$\frac{π}{4}$)的直線l,且直線l與拋物線C和圓Q依次交于M,A,B,N,求|MN||AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過(guò)F作直線l與拋物線交于點(diǎn)A(x1,y1),B(x2,y2),O為坐標(biāo)原點(diǎn),若|AB|=4p,且OA⊥OB,且$\overrightarrow{FA}$•$\overrightarrow{FB}$=-9.
(1)求拋物線C的方程;
(2)若直線l:y=x+m與拋物線C相切于點(diǎn)E,與圓(x+2)2+(y-$\frac{1}{2}$)2=4交于點(diǎn)F,G,求$\overrightarrow{EF}$•$\overrightarrow{EG}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知橢圓的兩個(gè)焦點(diǎn)是(-3,0),(3,0),且點(diǎn)(0,3)在橢圓上,則橢圓的標(biāo)準(zhǔn)方程是( 。
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.曲線y=3x-2x3在x=-1處的切線方程為( 。
A.3x+y+4=0B.x+3y+4=0C.3x+y-4=0D.x+3y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為an的一組正三角形AnBn-1Bn的底邊Bn-1Bn依次排列在x軸上(B0與坐標(biāo)原點(diǎn)重合).設(shè){an}是首項(xiàng)為a,公差為2的等差數(shù)列,若所有正三角形頂點(diǎn)An在第一象限,且均落在拋物線y2=2px(p>0)上,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.關(guān)于函數(shù)f(x)=6sin(2x+$\frac{π}{3}$)(x∈R),有下列命題:
①由f(x1)=f(x2)=0可得x1-x2必是π的整數(shù)倍;
②y=f(x)的表達(dá)式可改寫(xiě)為f(x)=6cos(2x-$\frac{π}{6}$);
③y=f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對(duì)稱(chēng);
④y=f(x)的圖象關(guān)于直線x=$\frac{π}{12}$對(duì)稱(chēng).
以上命題成立的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,PA=PD=AD=2BC=2,CD=$\sqrt{3}$,PB=$\sqrt{6}$,Q是AD的中點(diǎn).
(1)求證:平面PAD⊥底面ABCD;
(2)求三棱錐C-PBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),公比q≠1,設(shè)P=$\sqrt{{a}_{4}•{a}_{8}}$,Q=$\frac{{a}_{3}+{a}_{9}}{2}$,則P與Q的大小關(guān)系(  )
A.P>QB.P<QC.P=QD.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案