A. | y=±$\frac{a}{2}$x | B. | y=±$\frac{\sqrt{3}}{2}$x | C. | y=±$\frac{\sqrt{3}}{3}$x | D. | y=±$\sqrt{3}$x |
分析 根據(jù)拋物線的焦點(diǎn)坐標(biāo),得到雙曲線的右焦點(diǎn)為F(4,0),得a2+b2=16,結(jié)合雙曲線的離心率為2解出a、b之值,即可算出雙曲線的漸近線方程.
解答 解:∵拋物線y2=16x的焦點(diǎn)為F(4,0),
∴雙曲線雙曲線$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F(4,0),
可得a2+b2=c2=16,
又∵雙曲線的離心率為2,
∴$\frac{c}{a}$=2,得a=$\frac{1}{2}$c=2,從而得出b=$\sqrt{{c}^{2}-{a}^{2}}$=2$\sqrt{3}$,
∴雙曲線的漸近線方程為y=±$\frac{a}$x,即y=±$\sqrt{3}$x.
故選:D.
點(diǎn)評(píng) 本題給出雙曲線與已知拋物線有相同焦點(diǎn),在已知雙曲線的離心率的情況下求其漸近線方程.著重考查了拋物線、雙曲線的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{10}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | $\frac{{\sqrt{10}}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-$\frac{π}{5}$,$\frac{3π}{10}$} | B. | {-$\frac{7π}{10}$,$\frac{4π}{5}$} | ||
C. | {-$\frac{π}{5}$,-$\frac{7π}{10}$,$\frac{3π}{10}$,$\frac{4π}{5}$} | D. | {$\frac{3π}{10}$,-$\frac{7π}{10}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{37}{4}$ | B. | $\frac{35}{8}$ | C. | $\frac{28}{3}$ | D. | $\frac{27}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≥1} | B. | {x|1≤x<2} | C. | {x|0<x≤2} | D. | {x|x≤1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com