分析 (1)由cosA=$\frac{12}{13}$,sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{5}{13}$,由三角形的面積公式可知:S=$\frac{1}{2}$bcsinA即可求得△ABC的面積;
(2)由bc=156,c-b=1,即可求得b和c的值,由余弦定理可得a2=b2+c2-2bccosA,代入即可求得a的值.
解答 解:(1)由cosA=$\frac{12}{13}$,由同角三角函數(shù)的基本關系可知:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{5}{13}$,
∵bc=156.
∴△ABC的面積S,S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×156×$\frac{5}{13}$=30,
△ABC的面積30; …(6分)
(2)由題意可知:$\left\{\begin{array}{l}{bc=156}\\{c-b=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{b=12}\\{c=13}\end{array}\right.$,
∴由余弦定理可知:a2=b2+c2-2bccosA,…(9分)
=122+132-2×12×13×$\frac{12}{13}$,
=25,
∴a=5,
∴a的值5.
點評 本題考查正弦定理及余弦定理的綜合應用,考查同角三角函數(shù)的基本關系,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $3\sqrt{7}$ | B. | $2\sqrt{6}$ | C. | $5\sqrt{2}$ | D. | $2\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2≤x<1} | B. | {x|-3<x<2} | C. | {x|-2<x<2} | D. | {x|-3≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“?x0∈R,x02+x0+1<0”的否定是“?x∈R,x2+x+1>0” | |
B. | 命題“p∨q為真”是命題“p∧q為真”的充分不必要條件 | |
C. | 命題“若am2<bm2則a<b”是真命題 | |
D. | 命題“若sinx=siny則x=y”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com