A. | $[{-2\sqrt{2},2\sqrt{2}}]$ | B. | [-4,4] | C. | [-5,5] | D. | $[{-5\sqrt{2},5\sqrt{2}}]$ |
分析 求得雙曲線的焦點(diǎn)坐標(biāo),求得圓的方程,由圓心到直線的距離小于半徑,即可求得t的取值范圍.
解答 解:雙曲線$\frac{x^2}{3}-\frac{y^2}{2}=1$的左,右焦點(diǎn)分別為${F_1}({-\sqrt{5},0}),{F_2}({\sqrt{5},0})$,
∴圓O的方程為x2+y2=5.由直線$\sqrt{2}x+\sqrt{3}y+t=0$與圓O有公共點(diǎn),所
∴$\frac{|t|}{{\sqrt{2+3}}}≤\sqrt{5}$,解得:-5≤t≤5,
∴實(shí)數(shù)t的取值范圍是[-5,5].
故選C.
點(diǎn)評(píng) 本題考查曲線的簡(jiǎn)單幾何性質(zhì),點(diǎn)到直線的距離公式,考查計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 25 | B. | 5 | C. | $\frac{1}{25}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±(x-p) | B. | y=±2(x-p) | C. | y=±$\frac{2}{3}$(x-p) | D. | y=±$\frac{1}{2}$(x-p) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①④ | B. | ②③ | C. | ①③ | D. | ②④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com