A. | $[{-\frac{5π}{6},\frac{π}{12}}]$ | B. | $[{-\frac{π}{3},\frac{π}{6}}]$ | C. | $[{-\frac{π}{6},\frac{π}{3}}]$ | D. | $[{\frac{π}{6},\frac{2π}{3}}]$ |
分析 由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對(duì)稱性,求得φ值,利用正弦函數(shù)的單調(diào)性可求單調(diào)遞增區(qū)間.
解答 解:函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位后的函數(shù)解析式為:y=sin[2(x+$\frac{π}{6}$)+φ]=sin(2x+φ+$\frac{π}{3}$),
由函數(shù)圖象關(guān)于y軸對(duì)稱,可得:$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,即φ=kπ+$\frac{π}{6}$,k∈z,
由于|φ|<$\frac{π}{2}$,可得:φ=$\frac{π}{6}$,
可得:f(x)=sin(2x+$\frac{π}{6}$),
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,解答:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
可得,當(dāng)k=1時(shí),函數(shù)f(x)的一個(gè)單調(diào)遞增區(qū)間是:[-$\frac{π}{3}$,$\frac{π}{6}$].
故選:B.
點(diǎn)評(píng) 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性、余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{2}{3}$sin(2x+$\frac{π}{3}$) | B. | y=$\frac{2}{3}$sin($\frac{x}{2}$+$\frac{π}{4}$) | C. | y=$\frac{2}{3}$sin(x-$\frac{π}{3}$) | D. | y=$\frac{2}{3}$sin(2x+$\frac{2}{3}$π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{4}$個(gè)單位 | B. | 向左平移$\frac{π}{4}$個(gè)單位 | ||
C. | 向右平移$\frac{π}{2}$個(gè)單位 | D. | 向左平移$\frac{π}{2}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com