20.已知$p:|{1-\frac{x-1}{3}}|≤2$,q:x2-2x+(1-m2)≤0,若“¬p”是“¬q”的必要而不充分條件,求實(shí)數(shù)m的取值范圍.

分析 分別求出“¬p”和“¬q”對(duì)應(yīng)的x取值范圍A和B,根據(jù)“¬p”是“¬q”的必要而不充分條件,則B?A.可得答案.

解答 (本小題12分)
解:由$p:|{1-\frac{x-1}{3}}|≤2$,解得-2≤x≤10,
∴“¬p”:A=(-∞,-2)∪(10,+∞).
由q:x2-2x+(1-m2)≤0,
解得:1-|m|≤x≤1+|m|,
∴“¬q”:B=(-∞,1-|m|)∪(10,1+|m|).
由“¬p”是“¬q”的必要而不充分條件可知:B?A.
1-|m|≤-2,且1+|m|≥10,
解得|m|≥9.
∴滿足條件的m的取值范圍為(-∞,-9]∪[9,+∞).

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了命題的否定,充要條件,集合的包含關(guān)系,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{3}$,實(shí)軸長為2,直線l:x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,
(1)求雙曲線C的方程;  
(2)若線段AB的中點(diǎn)在圓x2+y2=5上,求m的值;
(3)若線段AB的長度為4$\sqrt{5}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知命題p:方程$\frac{x^2}{t+2}+\frac{y^2}{t-10}=1$表示雙曲線;命題q:-m<t<m+1(m>0). 若q是p的充分非必要條件,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知θ∈(${\frac{π}{2}$,π),$\frac{1}{sinθ}$+$\frac{1}{cosθ}$=2$\sqrt{2}$,則cos(2θ+$\frac{π}{3}}$)的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知命題p:方程$\frac{x^2}{m+1}+\frac{y^2}{3-m}=1$表示焦點(diǎn)在y軸上的橢圓,命題q:關(guān)于x的方程x2+2mx+2m+3=0無實(shí)根,若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知△ABC,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$,AD與CE的交點(diǎn)為G,$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,若$\overrightarrow{BG}$=λ$\overrightarrow{a}$+μ$\overrightarrow$,則λ+μ=( 。
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.非零向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a⊥({2\overrightarrow a+\overrightarrow b})$,且$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$,則$\frac{{|{\overrightarrow a}|}}{{|{\overrightarrow b}|}}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的圖象向左平移$\frac{π}{6}$個(gè)單位后關(guān)于y軸對(duì)稱,則函數(shù)f(x)的一個(gè)單調(diào)遞增區(qū)間是(  )
A.$[{-\frac{5π}{6},\frac{π}{12}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{π}{6},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)在R上的導(dǎo)函數(shù)為f'(x),對(duì)于任意的實(shí)數(shù)x,都有f'(x)+2017<4034x,若f(t+1)<f(-t)+4034t+2017,則實(shí)數(shù)t的取值范圍是(  )
A.$({-\frac{1}{2},+∞})$B.$({-\frac{3}{2},+∞})$C.$({-∞,-\frac{1}{2}})$D.$({-∞,-\frac{3}{2}})$

查看答案和解析>>

同步練習(xí)冊(cè)答案