分析 由共線原理可知三向量的終點共線,作出圖形,求出最短距離即可得出答案.
解答 解:設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{m}$,
則OA=1,∠OAB=120°,
∵$\overrightarrow m=λ\overrightarrow a+({1-λ})\overrightarrow b({λ∈R})$,
∴A,B,C三點共線,
O到直線AB的距離d=OA•sin60°=$\frac{\sqrt{3}}{2}$,
∴OC≥$\frac{\sqrt{3}}{2}$,
故答案為:[$\frac{\sqrt{3}}{2}$,+∞).
點評 本題考查了平面向量的基本定理,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{14}$ | B. | $\sqrt{2}$ | C. | $\sqrt{6}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“?x0∈R,2${\;}^{{x}_{0}}$>1”的否定是“?x∈R,2x≤1” | |
B. | 命題“若x=y,則x2=y2”的否命題是“若x=y,則x2≠y2” | |
C. | p:?x∈R,x2+1≥1,q:在△ABC中,若sinA=$\frac{1}{2}$,則A=$\frac{π}{6}$,則p∧q為真命題 | |
D. | 若平面α⊥平面β,直線a?α,直線b?β,則a⊥b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河南省新鄉(xiāng)市高二上學(xué)期入學(xué)考數(shù)學(xué)卷(解析版) 題型:選擇題
已知,則
A.0 B. C.1 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com