如圖,曲線與曲線相交于、、四個點.
⑴ 求的取值范圍;
⑵ 求四邊形的面積的最大值及此時對角線的交點坐標.

(1)(2) 的最大值為16.,對角線交點坐標為.

解析試題分析:(1)通過直線與拋物線聯(lián)立,借助判別式和韋達定理求解參數(shù)的范圍;(2)根據(jù)圖形的對稱性,明確四邊系A(chǔ)BCD的面積為,然后借助韋達定理將三角形面積表示為含有參數(shù)的表達式,最后化簡通過構(gòu)造函數(shù), 利那用求導的方法研究最值. 分別求出對角線的直線方程,進而求交點坐標.
試題解析:(1) 聯(lián)立曲線消去可得,
,根據(jù)條件可得,解得.
(4分)
(2) 設(shè),,,,

.
(6分)
,則,                 (7分)
設(shè),
則令,
可得當時,的最大值為,從而的最大值為16.
此時,即,則.                               (9分)
聯(lián)立曲線的方程消去并整理得
,解得,,
所以點坐標為,點坐標為
,
則直線的方程為,                (11分)
時,,由對稱性可知的交點在軸上,
即對角線交點坐標為.          (12分)
考點:1.直線與圓錐曲線的綜合應用能力;2.直線與圓錐曲線的相關(guān)知識;3.圓錐曲線中極值的求取.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知點,為動點,且直線與直線的斜率之積為.
(1)求動點的軌跡的方程;
(2)設(shè)過點的直線與曲線相交于不同的兩點,.若點軸上,且,求點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的對稱中心為坐標原點,上焦點為,離心率.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)軸上的動點,過點作直線與直線垂直,試探究直線與橢圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為橢圓的左,右焦點,為橢圓上的動點,且的最大值為1,最小值為-2.
(I)求橢圓的方程;
(II)過點作不與軸垂直的直線交該橢圓于兩點,為橢圓的左頂點。試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

極坐標系中橢圓C的方程為
以極點為原點,極軸為軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(Ⅰ)求該橢圓的直角標方程;若橢圓上任一點坐標為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點,且直線的傾斜角互補,
求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在直角坐標系中,曲線的參數(shù)方程為:為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的極坐標方程為:
(Ⅰ)寫出曲線和直線在直角坐標系下的方程;
(II)設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

曲線C上任一點到定點(0,)的距離等于它到定直線的距離.
(1)求曲線C的方程;
(2)經(jīng)過P(1,2)作兩條不與坐標軸垂直的直線分別交曲線C于A、B兩點,且,設(shè)M是AB中點,問是否存在一定點和一定直線,使得M到這個定點的距離與它到定直線的距離相等.若存在,求出這個定點坐標和這條定直線的方程.若不存在,說明理由.

查看答案和解析>>

同步練習冊答案