分析 由兩點式求出l1的斜率.
(1)再由兩點求斜率的到l2的斜率,由斜率相等求得m的值;
(2)由兩直線的斜率乘積等于-1得答案.
解答 解:∵直線l1經過點A(m,1),B(-1,m),∴直線l1的斜率為:$\frac{m-1}{-1-m}$
直線l2經過點P(1,2),Q(-5,0),∴直線l2的斜率為$\frac{1}{3}$.
(1)若l1∥l2,則$\frac{m-1}{-1-m}$=$\frac{1}{3}$,∴m=$\frac{1}{2}$
(2)若l1⊥l2,則$\frac{m-1}{-1-m}$$•\frac{1}{3}$=-1,∴m=-2.
點評 本題考查了直線的一般式方程與兩直線平行、垂直的關系,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com