12.函數(shù)y=2x-3x+4的零點(diǎn)個(gè)數(shù)為(  )
A.0B.1C.2D.3

分析 在同一坐標(biāo)系中,作出f(x)=3x,g(x)=2x+4,根據(jù)圖象的交點(diǎn)的個(gè)數(shù),即可得出結(jié)論.

解答 解:在同一坐標(biāo)系中,作出f(x)=3x,g(x)=2x+4,如圖所示
圖象有兩個(gè)交點(diǎn),所以函數(shù)y=2x-3x+4的零點(diǎn)個(gè)數(shù)為2,
故選:C.

點(diǎn)評 本題考查函數(shù)的零點(diǎn),考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知tanα=$\frac{4}{3}$,求sinα及cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某次志愿活動(dòng),需要從6名同學(xué)中選出4人負(fù)責(zé)A、B、C、D四項(xiàng)工作(每人負(fù)責(zé)一項(xiàng)),若甲、乙均不能負(fù)責(zé)D項(xiàng)工作,則不同的選擇方案有(  )
A.240種B.144種C.96種D.300種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知t>0,函數(shù)f(x)=$\left\{\begin{array}{l}x{(x-t)}^{2},x≤t\\ \frac{1}{4}x,x>t\end{array}\right.$,若函數(shù)g(x)=f(f(x)-1)恰有6個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是(3,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=$\sqrt{2}$,AA1=3,D是BC的中點(diǎn),點(diǎn)E在棱BB1
(1)證明:AD⊥C1E
(2)當(dāng)BE=1時(shí),求三棱錐C1-A1B1E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)的定義域?yàn)镽,且f(x)>1-f′(x),f(0)=4,則不等式f(x)>1+eln3-x的解集為(  )
A.(0,+∞)B.$({\frac{1}{2},+∞})$C.(1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.方程$\left\{{\begin{array}{l}x=-\frac{{2\sqrt{5}}}{5}t+2cosθ\\ y=\frac{{\sqrt{5}}}{5}t+\sqrt{3}sinθ\end{array}}$
(1)當(dāng)t=0時(shí),θ為參數(shù),此時(shí)方程表示曲線C1請把C1的參數(shù)方程化為普通方程;
(2)當(dāng)θ=$\frac{π}{3}$時(shí),t為參數(shù),此時(shí)方程表示曲線C2請把C2的參數(shù)方程化為普通方程;
(3)在(1)(2)的條件下,若P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到曲線C2距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{({\frac{1}{2}})^x}+1,x≥1\\ \frac{3x}{2},0<x<1\end{array}$,若函數(shù)g(x)=f(x)-k有兩不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某電腦公司有6名產(chǎn)品推銷員,其工作年限和年推銷金額數(shù)據(jù)如表:
推銷員編號12345
工作年限x/年35679
年推銷金額y/萬元609090120150
(1)畫出散點(diǎn)圖;
(2)求年推銷金額y關(guān)于工作年限x的線性回歸方程;
(3)若第6名推銷員的工作年限為11年,試估計(jì)他的年推銷金額.

查看答案和解析>>

同步練習(xí)冊答案