10.若函數(shù)f(x)=x2-4x+a對于一切x∈[0,1]時,恒有f(x)≥0成立,則實數(shù)a的取值范圍是( 。
A.[3,+∞)B.(3,+∞)C.(-∞,3]D.(-∞,3)

分析 由題意可得a≥-(x2-4x)對一切x∈[0,1]恒成立,由由g(x)=-(x2-4x)=-(x-2)2+4,當(dāng)且僅當(dāng)x=1時取得最大值3,即可得到a的范圍.

解答 解:函數(shù)f(x)=x2-4x+a對于一切x∈[0,1]時,恒有f(x)≥0成立,
即有a≥-(x2-4x)對一切x∈[0,1]恒成立,
由g(x)=-(x2-4x)=-(x-2)2+4,當(dāng)且僅當(dāng)x=1時取得最大值3,
∴a≥3.
故選A.

點評 本題考查二次不等式恒成立問題的解法,注意運用參數(shù)分離和函數(shù)的單調(diào)性,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知p:實數(shù)x滿足x2-4ax+3a2≤0,其中a<0;q:實數(shù)x滿足x2+5x+4<0,且p是q的充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.有下列四個命題:
(1)若α、β均為第一象限角,且α>β,則sin α>sin β;
(2)若函數(shù)y=2cos(ax-$\frac{π}{3}$)的最小正周期是4π,則a=$\frac{1}{2}$;
(3)函數(shù)y=$\frac{sin2x-sinx}{sinx-1}$是奇函數(shù);
(4)函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是增函數(shù).
(5)函數(shù)f(x)=sin2x+$\sqrt{3}$sin xcos x在區(qū)間[$\frac{π}{4}$,$\frac{π}{2}$]上的最大值是$\frac{3}{2}$.
其中正確命題的序號為(4)(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某班級50名學(xué)生的考試分?jǐn)?shù)x分布在區(qū)間[50,100)內(nèi),設(shè)分?jǐn)?shù)x的分布頻率是f(x)且f(x)=$\left\{\begin{array}{l}{\frac{n}{10}-0.4,10n≤x<10(n+1),n=5,6,7}\\{-\frac{n}{5}+b,10n≤x<10(n+1),n=8,9}\end{array}\right.$,考試成績采用“5分制”,規(guī)定:考試分?jǐn)?shù)在[50,60)內(nèi)的成績記為1分,考試分?jǐn)?shù)在[60,70)內(nèi)的成績記為2分,考試分?jǐn)?shù)在[70,80)內(nèi)的成績記為3分,考試分?jǐn)?shù)在[80,90)內(nèi)的成績記為4分,考試分?jǐn)?shù)在[90,100)內(nèi)的成績記為5分.用分層抽樣的方法,現(xiàn)在從成績在1分,2分及3分的人中用分層抽樣隨機抽出6人,再從這6人中抽出3人,記這3人的成績之和為ξ(將頻率視為概率).
(1)求b的值,并估計班級的考試平均分?jǐn)?shù);
(2)求P(ξ=7);
(3)求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A,B分別為橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右頂點,不同兩點P,Q在橢圓C上,且關(guān)于x軸對稱,設(shè)直線AP,BQ的斜率分別為m,n,則當(dāng)$\frac{a}+3\sqrt{mn}$取最小值時,橢圓C的離心率為( 。
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+ax+4
(1)若f(x)在[1,+∞)上遞增,求實數(shù)a的范圍;
(2)求f(x)在[-2,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知(2,0)是雙曲線${x^2}-\frac{y^2}{b^2}=1$的一個焦點,則b=±$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在(tanx+cotx)10的二項展開式中,tan2x的系數(shù)為210(用數(shù)值作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列-3,7,-11,15…,則下列選項能表示數(shù)列的一個通項公式的是(  )
A.an=4n-7B.an=(-1)n(4n+1)C.an=(-1)n•(4n-1)D.an=(-1)n+1•(4n-1)

查看答案和解析>>

同步練習(xí)冊答案