5.已知A,B分別為橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右頂點(diǎn),不同兩點(diǎn)P,Q在橢圓C上,且關(guān)于x軸對(duì)稱,設(shè)直線AP,BQ的斜率分別為m,n,則當(dāng)$\frac{a}+3\sqrt{mn}$取最小值時(shí),橢圓C的離心率為( 。
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{6}}}{3}$

分析 由題意設(shè)P和Q點(diǎn)坐標(biāo),代入橢圓方程利用橢圓的離心率公式即可求得mn的值,利用基本不等式的關(guān)系,即可求得a和b的關(guān)系,利用橢圓的離心率即可求得橢圓的離心率.

解答 解:設(shè)P(x0,y0),則Q(x0,-y0),y02=$\frac{^{2}({a}^{2}-{x}_{0}^{2})}{{a}^{2}}$.
A(-a,0),B(a,0),
則m=$\frac{{y}_{0}}{{x}_{0}+a}$,n=-$\frac{{y}_{0}}{{x}_{0}-a}$,
∴mn=($\frac{{y}_{0}}{{x}_{0}+a}$)(-$\frac{{y}_{0}}{{x}_{0}-a}$)=$\frac{{y}_{0}^{2}}{{a}^{2}-{x}_{0}^{2}}$=$\frac{^{2}}{{a}^{2}}$,
∴$\frac{a}+3\sqrt{mn}$=$\frac{a}$+$\frac{3b}{a}$≥2$\sqrt{\frac{a}•\frac{3b}{a}}$=2$\sqrt{3}$,當(dāng)且僅當(dāng)$\frac{a}$=$\frac{3b}{a}$,即a=$\sqrt{3}$b時(shí),等號(hào)成立,
∴橢圓的離心率e=$\frac{c}{a}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{\sqrt{6}}{3}$,
故選D.

點(diǎn)評(píng) 本題考查橢圓的離心率公式,直線的斜率公式及基本不等式的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x3-ax2-3x.
(1)若$x=-\frac{1}{3}$是函數(shù)f(x)的極值點(diǎn),求函數(shù)f(x)在[1,a]上的最大值;
(2)設(shè)函數(shù)g(x)=f(x)-bx,在(1)的條件下,若函數(shù)g(x)恰有3個(gè)零點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)拋物線y2=4x上一點(diǎn)P到直線x+2=0的距離是6,則點(diǎn)P到拋物線焦點(diǎn)F的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.有三個(gè)數(shù)成等差數(shù)列,前兩個(gè)數(shù)的和的3倍正好是第三個(gè)數(shù)的2倍,如果把第二個(gè)數(shù)減去2,那么所得數(shù)是第一個(gè)數(shù)與第三個(gè)數(shù)的等比中項(xiàng).求原來的三個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在銳角三角形ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.且2sinB(ccosB+bcosC)=$\sqrt{3}$b
(1)求角A的大小
(2)若a=b,b+c=8,求△ABC的面積
(3)求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=x2-4x+a對(duì)于一切x∈[0,1]時(shí),恒有f(x)≥0成立,則實(shí)數(shù)a的取值范圍是( 。
A.[3,+∞)B.(3,+∞)C.(-∞,3]D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=a+$\frac{2}{{2}^{x}-1}$(a∈R)是奇函數(shù)
(1)利用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上是減函數(shù);
(2)若f(|x|)>k+log2$\frac{m}{2}$•log2$\frac{4}{m}$對(duì)任意的m∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù) f(x)=ax3+f'(2)x2+3,若 f'(1)=-5,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.從1、2、3、4、5、6這6個(gè)數(shù)字中,一次性任取兩數(shù),兩數(shù)都是偶數(shù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案