【題目】設(shè)橢圓C: 的一個頂點與拋物線: 的焦點重合,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點的直線l與橢圓C交于M、N兩點.
(1)求橢圓C的方程;
(2)是否存在直線l,使得 ,若存在,求出直線l的方程;若不存在,說明理由;
【答案】(1);(2)y=±(x﹣1)
【解析】
(1)根據(jù)拋物線的焦點求得的值,利用離心率和列方程,解方程后可求得的值,進(jìn)而求得橢圓方程.(2)當(dāng)斜率為零時,驗證,不符合題意.當(dāng)斜率不為零時,設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達(dá)定理,計算,可求得直線的斜率,由此求得直線的方程.
解:(I)由已知得b,
又e,
∴a2=3,
∴橢圓C的方程為:;;
(II)若直線l的斜率為0,則3(舍去);
若直線斜率不為0,設(shè)直線l的方程為:x=my+1,
代入橢圓C的方程,消去y整理得:
(3+2m2)y2+4my﹣4=0,
設(shè)M(x1,y1),N(x2,y2),
則有:y1+y2,y1y2,
又∵x1=my1+1,x2=my2+1,
∴x1x2+y1y2
=(my1+1)(my2+1)+y1y2
=(1+m2)y1y2+m(y1+y2)+1
=(1+m2)()+m()+1
=﹣1,
解得m=±,
∴直線l方程為:y=±(x﹣1);
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型企業(yè)針對改善員工福利的,,三種方案進(jìn)行了問卷調(diào)查,調(diào)查結(jié)果如下:
支持方案 | 支持方案 | 支持方案 | |
35歲以下的人數(shù) | 200 | 400 | 800 |
35歲及以上的人數(shù) | 100 | 100 | 400 |
(1)從所有參與調(diào)查的人中,用分層隨機抽樣的方法抽取人,已知從支持方案的人中抽取了6人,求的值.
(2)從支持方案的人中,用分層隨機抽樣的方法抽取5人,這5人中年齡在35歲及以上的人數(shù)是多少?年齡在35歲以下的人數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對平面區(qū)域,用表示屬于的所有整點(即平面上坐標(biāo)都是整數(shù)的點)的個數(shù).若表示由曲線和兩直線所圍成的區(qū)域(包括邊界);表示由曲線和兩直線所圍成的區(qū)域(包括邊界).則______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)令,討論的單調(diào)性.
(3)當(dāng)時,恒成立,求實數(shù)的取值范圍.( 為自然對數(shù)的底數(shù), …).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級的一次月考成績中隨機抽取了 50名學(xué)生的成績(滿分100分,且抽取的學(xué)生成績都在內(nèi)),按成績分為,,,,五組,得到如圖所示的頻率分布直方圖.
(1)用分層抽樣的方法從月考成績在內(nèi)的學(xué)生中抽取6人,求分別抽取月考成績在和內(nèi)的學(xué)生多少人;
(2)在(1)的前提下,從這6名學(xué)生中隨機抽取2名學(xué)生進(jìn)行調(diào)查,求月考成績在內(nèi)至少有1名學(xué)生被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》 是我國古代的天文學(xué)和數(shù)學(xué)著作。其中一個問題的大意為:一年有二十四個節(jié)氣(如圖),每個節(jié)氣晷長損益相同(即物體在太陽的照射下影子長度的增加量和減少量相同).若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:ー丈等于十尺,一尺等于十寸),則立冬節(jié)氣的晷長為( )
A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某中學(xué)舉行的電腦知識競賽中,將九年級兩個班參賽的學(xué)生成績(得分均為整數(shù))進(jìn)行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知第二小組的頻數(shù)是40.
(1)求第二小組的頻率,并補全這個頻率分布直方圖;
(2)求這兩個班參賽的學(xué)生人數(shù);
(3)求這兩個班參賽學(xué)生的成績的中位數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com