13.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{1-i}{i}$對應(yīng)的點的坐標(biāo)為(-1,-1).

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)$\frac{1-i}{i}$=$\frac{(1-i)i}{{i}^{2}}$=-1-i在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)(-1,-1).
故答案為:(-1,-1).

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2-9lnx在區(qū)間[a-1,a+1]上單調(diào)遞減,則實數(shù)a的取值范圍是(  )
A.(1,2]B.[4,+∞)C.(-∞,2]D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.一名法官在審理一起珍寶盜竊案時,四名嫌疑人甲、乙、丙、丁的供詞如下:甲說:“罪犯在乙、丙、丁三人之中”;乙說:“我沒有作案,是丙偷的”;丙說:“甲、乙兩人中有一人是小偷”;丁說:“乙說的是事實”,經(jīng)過調(diào)查核實,四人中有兩人說的是真話,另外兩人說的是假話,且這四人中只有一人是罪犯,由此可判斷罪犯是乙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,將正六邊形ABCDEF中的一半圖形ABCD繞AD翻折到AB1C1D,使得∠B1AF=60°.G是BF與AD的交點.
(Ⅰ)求證:平面ADEF⊥平面B1FG;
(Ⅱ)求直線AB1與平面ADEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若a,b,c均為正實數(shù),則三個數(shù)a+$\frac{1}$,b+$\frac{1}{c}$,c+$\frac{1}{a}$這三個數(shù)中不小于2的數(shù)( 。
A.可以不存在B.至少有1個C.至少有2個D.至多有2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=et(x-1)-tlnx,(t>0)
(Ⅰ)若t=1,證明x=1是函數(shù)f(x)的極小值點;
(Ⅱ)求證:f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,函數(shù)f(x)的圖象經(jīng)過(0,0),(4,8),(8,0),(12,8)四個點,試用“>,=,<”填空:
(1)$\frac{f(4)-f(2)}{2}$>$\frac{f(12)-f(8)}{4}$;
(2)f′(6)<f′(10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.觀察下列式子:
13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,按照上述規(guī)律,則83=57+59+61+63+65+67+69+71.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,如果輸人的x=-10.則輸出的y=( 。
A.0B.1C.8D.27

查看答案和解析>>

同步練習(xí)冊答案