A. | $\frac{π}{4}$ | B. | 1-$\frac{π}{4}$ | C. | $\frac{{\sqrt{3}π}}{24}$ | D. | $1-\frac{{\sqrt{3}π}}{24}$ |
分析 以菱形ABCD的各個頂點為圓心、半徑為1作圓如圖所示,可得當該點位于圖中陰影部分區(qū)域時,它到四個頂點的距離均大于1.因此算出菱形ABCD的面積和陰影部分區(qū)域的面積,利用幾何概型計算公式加以計算,即可得到所求的概率.
解答 解:分別以菱形ABCD的各個頂點為圓心,作半徑為1的圓,如圖所示.
在菱形ABCD內(nèi)任取一點P,則點P位于四個圓的外部時,
滿足點P到四個頂點的距離均大于1,即圖中的陰影部分區(qū)域
∵S菱形ABCD=AB•BCsin120°=4×4×$\frac{\sqrt{3}}{2}$=8$\sqrt{3}$,
∴S陰影=S菱形ABCD-S空白=8$\sqrt{3}$-π×12=8$\sqrt{3}$-π.
因此,該點到四個頂點的距離大于1的概率P=1-$\frac{\sqrt{3}π}{24}$,
故選D.
點評 本題主要考查幾何概型的概率的計算,根據(jù)對應分別求出對應區(qū)域的面積是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“?x∈R.ex>0”的否定是“?x∈R,ex>0” | |
B. | 命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點”的逆命題是真命題 | |
C. | “x2+2x≥ax在x∈[1,2]上恒成立”?“對于x∈[1,2]有(x2+2x)min≥(ax)max” | |
D. | 命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一、三象限角 | B. | 第二、四象限角 | C. | 第二、三象限角 | D. | 第一、四象限角 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com