【題目】已知拋物線,點(diǎn)與拋物線的焦點(diǎn)關(guān)于原點(diǎn)對稱,動(dòng)點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和為4.

(1)求動(dòng)點(diǎn)的軌跡;

(2)若,設(shè)過點(diǎn)的直線的軌跡相交于兩點(diǎn),當(dāng)的面積最大時(shí),求直線的方程.

【答案】(1)詳見解析(2)

【解析】

(1)先求的坐標(biāo),若,則動(dòng)點(diǎn)的軌跡不存在;若,則動(dòng)點(diǎn)的軌跡為線段;若,則動(dòng)點(diǎn)的軌跡為橢圓.

(2)直線的斜率必存在,可先聯(lián)立直線方程和橢圓的方程,消元后利用韋達(dá)定理可求的長,再求出到直線的距離后可得面積表達(dá)式,最后利用基本不等式可得面積何時(shí)最大并能求出此時(shí)直線的方程.

(1)①當(dāng)時(shí),的軌跡不存在.

②當(dāng)時(shí),的軌跡為一線段,方程為

③當(dāng)時(shí),的軌跡為焦點(diǎn)在軸上的橢圓,方程為.

(2)若,則的軌跡方程為 .

當(dāng)軸時(shí)不合題意, 故設(shè),.

代入.

,,

解得.

由韋達(dá)定理得, ,

.

又點(diǎn)到直線的距離,

,其中.

,則

當(dāng)且僅當(dāng),時(shí)等號成立,

所以,當(dāng)的面積最大時(shí),的方程為.

方法二:若,則的軌跡方程為.

當(dāng)軸時(shí)不合題意, 故設(shè),,,且.

代入.

,,

解得.

由韋達(dá)定理得,,

,則

當(dāng)且僅當(dāng),時(shí)等號成立,

所以,當(dāng)的面積最大時(shí),的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.

(1)求橢圓的方程;

(2)已知定點(diǎn),是否存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃按月訂購一種飲料,每天進(jìn)貨量相同,進(jìn)貨成本每瓶3元,售價(jià)每瓶5元,每天未售出的飲料最后打4折當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為100瓶為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

求六月份這種飲料一天的需求量單位:瓶的分布列,并求出期望EX;

設(shè)六月份一天銷售這種飲料的利潤為單位:元,且六月份這種飲料一天的進(jìn)貨量為單位:瓶,請判斷Y的數(shù)學(xué)期望是否在時(shí)取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點(diǎn),點(diǎn)M在正方形BCC1B1內(nèi)運(yùn)動(dòng),且直線AM//平面A1DE,則動(dòng)點(diǎn)M 的軌跡長度為( )

A. B. π C. 2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為全面推進(jìn)新課程改革,在高一年級開設(shè)了研究性學(xué)習(xí)課程,某班學(xué)生在一次研究活動(dòng)課程中,一個(gè)小組進(jìn)行一種驗(yàn)證性實(shí)驗(yàn),已知該種實(shí)驗(yàn)每次實(shí)驗(yàn)成功的概率為

求該小組做了5次這種實(shí)驗(yàn)至少有2次成功的概率.

如果在若干次實(shí)驗(yàn)中累計(jì)有兩次成功就停止實(shí)驗(yàn),否則將繼續(xù)下次實(shí)驗(yàn),但實(shí)驗(yàn)的總次數(shù)不超過5次,求該小組所做實(shí)驗(yàn)的次數(shù)的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足對任意,都有成立,則實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當(dāng)時(shí),解不等式;

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邊長為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,這個(gè)定值等于;將這個(gè)結(jié)論推廣到空間是:棱長為的正四面體內(nèi)任一點(diǎn)到各面距離之和等于________________.(具體數(shù)值)

查看答案和解析>>

同步練習(xí)冊答案