【題目】已知直線(xiàn)l1經(jīng)過(guò)兩點(diǎn)(1,-2),(1,4)直線(xiàn)l2經(jīng)過(guò)兩點(diǎn)(2,1)(6y),l1l2,y(  )

A. 2 B. 1 C. 2 D. 4

【答案】B

【解析】因?yàn)?/span>l1l2,且直線(xiàn)l1的斜率k1不存在,所以直線(xiàn)l2的斜率k2=0,則y=1.

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車(chē)流速度(單位:千米時(shí))是車(chē)流密度(單位:輛千米)的函數(shù).當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/時(shí).研究表明:當(dāng)時(shí),車(chē)流速度是車(chē)流密度的一次函數(shù).

(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;

(2)當(dāng)車(chē)流密度為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小型餐館一天中要購(gòu)買(mǎi),兩種蔬菜,,蔬菜每公斤的單價(jià)分別為2元和3元.根據(jù)需要蔬菜至少要買(mǎi)6公斤蔬菜至少要買(mǎi)4公斤,而且一天中購(gòu)買(mǎi)這兩種蔬菜的總費(fèi)用不能超過(guò)60元.如果這兩種蔬菜加工后全部賣(mài)出,,兩種蔬菜加工后每公斤的利潤(rùn)分別為2元和1元,餐館如何采購(gòu)這兩種蔬菜使得利潤(rùn)最大,利潤(rùn)最大為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直三棱柱的底面為正三角形,分別是的中點(diǎn)

1證明:平面平面;

2中點(diǎn),,設(shè)三棱錐的體積為,三棱錐與三棱錐的公共部分的體積為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若棱臺(tái)上、下底面的對(duì)應(yīng)邊之比為1∶2則上、下底面的面積之比是 (  )

A. 1∶2 B. 1∶4 C. 2∶1 D. 4∶1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)其中是自然數(shù)的底數(shù),

(1)當(dāng)時(shí),解不等式;

(2)若,試判斷上是否有最大或最小值說(shuō)明你的理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

)若,求的單調(diào)區(qū)間;()若有最大值3,求的值;()若的值域是,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi單位:千元與月儲(chǔ)蓄yi單位:千元的數(shù)據(jù)資料,算得=80, =20, =184, =720

求家庭的月儲(chǔ)蓄y對(duì)月收入x的線(xiàn)性回歸方程y=bx+a;

判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);

若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, , 底面.

(1)證明: ;

(2)設(shè),求點(diǎn)到面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案