6.小明和小東兩人比賽下象棋,小明不輸?shù)母怕适?\frac{3}{4}$,小東輸?shù)母怕适?\frac{1}{2}$,則兩人和棋的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

分析 利用互斥事件概率加法公式求解.

解答 解:∵小明和小東兩人比賽下象棋,
小明不輸?shù)母怕适?\frac{3}{4}$,小東輸?shù)母怕适?\frac{1}{2}$,
∴兩人和棋的概率為:p=$\frac{3}{4}-\frac{1}{2}$=$\frac{1}{4}$.
故選:A.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意互斥事件概率加法公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設(shè)池底長方形的長為x米.
(Ⅰ)求底面積,并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設(shè)計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知一扇形的圓心角是60°,弧長是π,則這個扇形的面積是( 。
A.B.$\frac{3π}{2}$C.D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=aex-sinx在x=0處有極值,則a的值為( 。
A.-1B.0C.1D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.與命題“若x∈A,則x∈B”等價的命題為若x∉A,則x∉B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.利民奶牛場在2016年年初開始改進奶牛飼養(yǎng)方法,同時每月增加一定數(shù)目的產(chǎn)奶奶牛,2016年2到5月該奶牛場的產(chǎn)奶量如表所示:
月份2345
產(chǎn)奶量y(噸)2.5344.5
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程;
(3)試預(yù)測該奶牛場6月份的產(chǎn)奶量?
(注:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{x})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+2{cos^2}x-{sin^2}x$
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若$f(α)=2,α∈[{\frac{π}{12},\frac{5π}{12}}]$,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為比較甲、乙兩地某月14時的氣溫狀況,隨機選取該月中的5天,將這5天中14時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫;
②甲地該月14時的平均氣溫高于乙地該月14時的平均氣溫;
③甲地該月14時的平均氣溫的標準差大于乙地該月14時的氣溫的標準差.
④甲地該月14時的平均氣溫的標準差小于乙地該月14時的氣溫的標準差;
其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的標號為(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a>0,b>0.若$\sqrt{3}$是3a與32b的等比中項,則$\frac{2}{a}$+$\frac{1}$的最小值為8.

查看答案和解析>>

同步練習(xí)冊答案