2.已知F1,F(xiàn)2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,點M在E上,MF1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,則E的離心率為( 。
A.2B.$\frac{3}{2}$C.$\sqrt{3}$D.$\sqrt{2}$

分析 根據(jù)雙曲線的定義,結(jié)合直角三角形的勾股定理建立方程關(guān)系進(jìn)行求解即可.

解答 解:∵M(jìn)F1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,
∴設(shè)MF1=m,則MF2=3m,
由雙曲線的定義得3m-m=2a,即m=a,
在直角三角形MF2F1中,9m2-m2=4c2,即2m2=c2
即2a2=c2,
則e=$\sqrt{2}$,
故選:D.

點評 本題主要考查雙曲線離心率的計算,根據(jù)雙曲線的定義結(jié)合直角三角形的勾股定理,結(jié)合雙曲線離心率的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.集合A={x|-2≤x≤3},B={x|x<-1},則A∩(∁RB)等于( 。
A.{x|x>-1}B.{x|x≥-1}C.{x|-2≤x≤-1}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx+a(a∈R),g(x)=$\frac{2x}{{e}^{x-1}}$-e(e為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)f(x)的零點個數(shù);
(Ⅱ)求證:當(dāng)x>0時,f(x)>g(x)+a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),在以原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,圓C的方程為ρ=6sinθ.
(Ⅰ)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點P(4,3),直線l與圓C相交于A,B兩點,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知P(0,1)是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一點,點P到橢圓C的兩個焦點的距離之和為2$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C上異于點P的兩點,直線PA與直線x=4交于點M,是否存在點A,使得S△ABP=$\frac{1}{2}{S_{△ABM}}$?若存在,求出點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)復(fù)數(shù)z=1-i,則$\frac{3-4i}{z+1}$=2-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x∈N+|3x-9<0},集合B={x|$\frac{1}{2}$<2x<8},集合C={1,2a-4}.
(1)求A∩B;
(2)若C⊆(A∩B),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若數(shù)列{an}滿足an+12-an2=d(d為正常數(shù),n∈N*),則稱{an}為“等方差數(shù)列”.甲:數(shù)列{an}是等方差數(shù)列;乙:數(shù)列{an}是等差數(shù)列,則( 。
A.甲是乙的充分條件但不是必要條件
B.甲是乙的必要條件但不是充分條件
C.甲是乙的充要條件
D.甲既不是乙的充分條件也不是乙的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)$f(x)=\sqrt{a{x^2}+bx+c}$(a,b,c∈R)的定義域和值域分別為集合A,B,且集合{(x,y)|x∈A,y∈B}表示的平面區(qū)域是邊長為1的正方形,則b+c的最大值為5.

查看答案和解析>>

同步練習(xí)冊答案