9.點(diǎn)P(x,y)在橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$上,則x+y的最大值為(  )
A.3B.4C.5D.6

分析 利用橢圓的參數(shù)方程,利用輔助角公式及正弦函數(shù)的性質(zhì),即可求得x+y的最大值.

解答 解:由題意點(diǎn)P(x,y)在橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$上,則x=4cosα,y=3sinα,
∴x+y=4cosα+3sinα=5sin(α+φ),tanφ=$\frac{4}{3}$,
由正弦函數(shù)的性質(zhì)可知:x+y的最大值5,
故選:C.

點(diǎn)評(píng) 本題考查橢圓的參數(shù)方程,輔助角角公式的應(yīng)用,正弦函數(shù)的性質(zhì),考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.圖(1)、(2)、(3)、(4)分別包含1個(gè)、5個(gè)、13個(gè)、25個(gè)第二十九屆北京奧運(yùn)會(huì)吉祥物“福娃迎迎”,按同樣的方式構(gòu)造圖形,設(shè)第n個(gè)圖形包含f(n)個(gè)“福娃迎迎”.則f(6)=61.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)點(diǎn)$F({0,\frac{1}{4}})$,動(dòng)圓A經(jīng)過點(diǎn)F且和直線$y=-\frac{1}{4}$相切,記動(dòng)圓的圓心A的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)曲線C上一點(diǎn)P的橫坐標(biāo)為t(t>0),過P的直線交C于一點(diǎn)Q,交x軸于點(diǎn)M,過點(diǎn)Q作PQ的垂線交C于另一點(diǎn)N,若MN是C的切線,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下面與角$\frac{23π}{3}$終邊相同的角是( 。
A.$\frac{4}{3}π$B.$\frac{π}{3}$C.$\frac{5π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=x2-2x-1,x∈[-3,2]的最大值、最小值分別為( 。
A.14,-2B.14,-1C.2,-2D.7,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=|-2x+4|-|x+6|.
(1)求不等式f(x)≥0的解集;
(2)若f(x)>a+|x-2|存在實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,在△ABC中,BD=2CD,若$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,則$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$B.$\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$D.$\frac{2}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)隨機(jī)變量的分布列如表所示,且E(ξ)=1.6,則ab=(  )
ξ0123
P0.1ab0.1
A.0.2B.0.1C.0.15D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知tanx=2,則$\frac{6sin2x+2cos2x}{cos2x-3sin2x}$的值為-$\frac{2}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案