4.函數(shù)f(x)=x2-2x-1,x∈[-3,2]的最大值、最小值分別為( 。
A.14,-2B.14,-1C.2,-2D.7,-2

分析 由條件利用二次函數(shù)的性質(zhì)求得函數(shù)的最值.

解答 解:∵函數(shù)f(x)=x2-2x-1=(x-1)2-2,x∈[-3,2],
函數(shù)的對稱軸是x=1,
故函數(shù)f(x)在[-3,1)遞減,在(1,2]遞增,
∴當x=1時,函數(shù)取得最小值為-2,
當x=-3時,函數(shù)取得最大值為14,
故選:A.

點評 本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.通過隨機詢問100名性別不同的大學生是否愛好踢毽子,得到如的列聯(lián)表,參照附表,則在犯錯誤概率不超過( 。┣闆r下認為“愛好該項運動與性別有關(guān)”.
 總計
愛好104050
不愛好203050
總計3070n
A.1%B.2.5%C.5%D.10%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.《張丘建算經(jīng)》卷上第22題為:“今有女善織,日益功疾(注:從第2天開始,每天比前一天多織相同量的布),第一天織5尺布,從第2天起每天比前一天多織$\frac{16}{29}$尺布,則一月(按30天計)共織( 。┏卟迹
A.250B.300C.360D.390

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,甲、乙兩人這幾場比賽得分的平均數(shù)分別為$\overline{x_甲}$,$\overline{x_乙}$;準差分別是s,s,則有( 。
A.$\overline{x_甲}$<$\overline{x_乙}$,s<sB.$\overline{x_甲}$<$\overline{x_乙}$,s>s
C.$\overline{x_甲}$>$\overline{x_乙}$,s<sD.$\overline{x_甲}$>$\overline{x_乙}$,s>s

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在平面直角坐標系xOy中,角α是以O(shè)x軸為始邊,OA為終邊的角,把OA繞點O逆時針旋轉(zhuǎn)β(0<β<π)角到OB位置,已知A、B是單位圓上分別位于第一、二象限內(nèi)的點,它們的橫坐標分別為$\frac{3}{5}$、-$\frac{{\sqrt{2}}}{2}$.
(1)求$\frac{1+sin2α}{cos2α}$的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.點P(x,y)在橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$上,則x+y的最大值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知集合$A=\left\{{({x,y})\left|{y=\sqrt{9-{x^2}}}\right.}\right\}$,B={(x,y)|y=x+b},若A與B的交集中有且只有一個元素,則b的取值范圍是{b|-3≤b≤3或b=4}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(1)已知實數(shù)x,y均為正數(shù),求證:$(x+y)(\frac{4}{x}+\frac{9}{y})≥25$;
(2)解關(guān)于x的不等式x2-2ax+a2-1<0(a∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知x=1是不等式k2x2-6kx+8≥0的解,則k的取值范圍是k≥4或k≤2.

查看答案和解析>>

同步練習冊答案