分析 (1)推導(dǎo)出四邊形BCDQ為平行四邊形,從而CD∥BQ.又QB⊥AD.從而BQ⊥平面PAD,由此能證明平面PQB⊥平面PAD.
(2)證明BC⊥平面PQB,利用三棱錐的體積公式進(jìn)行求解即可.
解答 (1)證明:∵AD∥BC,BC=$\frac{1}{2}$AD,Q為AD的中點(diǎn),
∴四邊形BCDQ為平行四邊形,∴CD∥BQ.
∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.∵BQ?平面PQB,∴平面PQB⊥平面PAD;
(2)解:PA=PD=2,Q是AD的中點(diǎn),
∴PQ⊥平面ABCD,
∴PQ⊥BC,
∵DCBQ是矩形,
∴BC⊥QB,
∵PQ∩QB=Q,
∴BC⊥平面PQB,
∴四面體M-PQB的體積=$\frac{1}{3}×\frac{1}{2}×PQ×QB×\frac{1}{2}BC$=$\frac{1}{4}$.
點(diǎn)評 本題考查面面垂直的證明,考查體積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,0) | B. | (-2,-3) | C. | (0,1) | D. | (-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | b<c<a | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | G=N+,⊕為整數(shù)的加法 | B. | G=N,⊕為整數(shù)的加法 | ||
C. | G=Z,⊕為整數(shù)的減法 | D. | G={x|x=2n,n∈Z},⊕為整數(shù)的乘法 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com