10.觀察新生嬰兒的體重,其頻率分布直方圖如圖所示,則新生嬰兒體重在(2700,3000)內(nèi)的頻率為( 。
A.0.001B.0.1C.0.2D.0.3

分析 由頻率分布直方圖,能求出新生嬰兒體重在(2700,3000)內(nèi)的頻率.

解答 解:由頻率分布直方圖,得:
新生嬰兒體重在(2700,3000)內(nèi)的頻率為0.001×300=0.3.
故選:D.

點評 本題考查頻率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意頻率分布直方圖的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}滿足a1=-1,${a_{n+1}}=\frac{{(3n+3){a_n}+4n+6}}{n},n∈{N^*}$.
(1)求證:數(shù)列$\left\{{\frac{{{a_n}+2}}{n}}\right\}$是等比數(shù)列;
(2)設(shè)${b_n}=\frac{{{3^{n-1}}}}{{{a_n}+2}},n∈{N^*}$,求證:當(dāng)n≥2,n∈N*時,${b_{n+1}}+{b_{n+2}}+…+{b_{2n}}<\frac{4}{5}-\frac{1}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}滿足前n項和Sn=1-an(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log${\;}_{\frac{1}{2}}$an,求證:$\frac{1}{{_{1}}^{2}}+\frac{1}{{_{2}}^{2}}$+…+$\frac{1}{{_{n}}^{2}}$<$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.$\frac{sin38°sin38°+cos38°sin52°-ta{n}^{2}15°}{3tan15°}$等于(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow$=(-1,-2).
(1)求$\overrightarrow{a}$,$\overrightarrow$的夾角的余弦值;
(2)若向量$\overrightarrow{a}$-λ$\overrightarrow$與2$\overrightarrow{a}$+$\overrightarrow$垂直,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{x-1,x≥0}\end{array}\right.$,若關(guān)于x的方程f(x)-a2+2a=0有三個不同的實數(shù)根,則實數(shù)a的取值范圍是0<a<1或1<a<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{4}(x+1)|,-1<x<1}\\{cos\frac{π}{3}x,1≤x≤6}\end{array}\right.$,若存在實數(shù)x1,x2,x3,x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則$\frac{({x}_{3}-1)({x}_{4}-1)}{({x}_{1}+1)({x}_{2}+1)}$的取值范圍是( 。
A.(0,4)B.(0,$\frac{7}{4}$)C.($\frac{1}{2}$,$\frac{9}{4}$)D.($\frac{1}{4}$,$\frac{7}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)y=f(x)的定義域為D,值域為A,如果存在函數(shù)x=g(t),使得函數(shù)y=f[g(t)]的值域仍是A,那么稱x=g(t)是函數(shù)y=f(x)的一個等值域變換.
(1)判斷下列函數(shù)x=g(t)是不是函數(shù)y=f(x)的一個等值域變換?說明你的理由;
①$f(x)={log_2}x,x>0,x=g(t)=t+\frac{1}{t},t>0$;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R.
(2)設(shè)f(x)=log2x的定義域為x∈[2,8],已知$x=g(t)=\frac{{m{t^2}-3t+n}}{{{t^2}+1}}$是y=f(x)的一個等值域變換,且函數(shù)y=f[g(t)]的定義域為R,求實數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-$\frac{1}{2}$|-|2x+1|.
(Ⅰ)求f(x)的值域;
(Ⅱ)若f(x)的最大值時a,已知x,y,z均為正實數(shù),且x+y+z=a,求證:$\frac{{y}^{2}}{x}$+$\frac{{z}^{2}}{y}$+$\frac{{x}^{2}}{z}$≥1.

查看答案和解析>>

同步練習(xí)冊答案