8.給出下列一段推理:若一條直線平行于平面,則這條直線平行于平面內(nèi)所有直線.已知直線a?平面α,直線b?平面α,且a∥α,所以a∥b.上述推理的結(jié)論不一定是正確的,其原因是( 。
A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.非以上錯誤

分析 分析該演繹推理的三段論,即可得出錯誤的原因是什么.

解答 解:該演繹推理的大前提是:若直線平行于平面,則該直線平行于平面內(nèi)所有直線;
小前提是:已知直線a?平面α,直線b?平面α,且a∥α;
結(jié)論是:a∥b;
該結(jié)論是錯誤的,因為大前提是錯誤的,
正確敘述是“若直線平行于平面,過該直線作平面與已知平面相交,則交線與該直線平行”.
故選:A.

點評 本題通過演繹推理的三段論敘述,考查了空間中線面垂直的性質(zhì)定理的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.-150°的弧度數(shù)是(  )
A.-$\frac{5π}{6}$B.$\frac{4π}{3}$C.-$\frac{2π}{3}$D.-$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若$P(A)=\frac{3}{4}$,$P(B)=\frac{1}{4}$,$P(AB)=\frac{1}{2}$,則P(B|A)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=(x-3)ex在(0,+∞)上的零點個數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某養(yǎng)殖場需定期購買飼料,已知該場每天需要飼料200千克,每千克飼料的價格為1.8元,飼料的保管費與其他費用平均每千克每天0.03元,購買飼料每次支付運費300元.
(Ⅰ)求該養(yǎng)殖場多少天購買一次飼料才能使平均每天支付的總費用最少;
(Ⅱ)若提供飼料的公司規(guī)定,當(dāng)一次購買飼料不少于5噸時,其價格可享受八五折優(yōu)惠(即為原價的85%).問:為使該養(yǎng)殖場平均每天支付的總費用最少,該場是否應(yīng)考慮利用此優(yōu)惠條件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2017年4月14日,某財經(jīng)頻道報道了某地建筑市場存在違規(guī)使用未經(jīng)淡化海砂的現(xiàn)象.為了研究使用淡化海砂與混凝土耐久性是否達標(biāo)有關(guān),某大學(xué)實驗室隨機抽取了60個樣本,得到了相關(guān)數(shù)據(jù)如表:
混凝土耐久性達標(biāo)混凝土耐久性不達標(biāo)總計
使用淡化海砂25t30
使用未經(jīng)淡化海砂s
總計4060
(Ⅰ)根據(jù)表中數(shù)據(jù),求出s,t的值;
(Ⅱ)利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下認(rèn)為使用淡化海砂與混凝土耐久性是否達標(biāo)有關(guān)?
參考數(shù)據(jù):
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.$\frac{i}{{\sqrt{7}+3i}}$=( 。
A.$\frac{3}{16}-\frac{{\sqrt{7}}}{16}i$B.$\frac{3}{16}+\frac{{\sqrt{7}}}{16}i$C.$-\frac{3}{16}+\frac{{\sqrt{7}}}{16}i$D.$-\frac{3}{16}-\frac{{\sqrt{7}}}{16}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:?x∈R,x2+ax+a2≥0(a∈R),命題q:$?{x_0}∈{N^*}$,$2x_0^2-1≤0$,則下列命題中為真命題的是( 。
A.p∧qB.p∨qC.?p)∨qD.?p)∧(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,邊長為2的正方形ABFC和高為2的直角梯形ADEF所在的平面互相垂直,AF∩BC=O,DE=$\sqrt{2}$,ED∥AF,且∠DAF=90°.
(1)求證:DE⊥平面BCE;
(2)過O作OH⊥平面BEF,垂足為H,求三棱錐A-BCH的體積.

查看答案和解析>>

同步練習(xí)冊答案