【題目】已知2017年市居民平均家庭凈收入走勢圖(家庭凈收入=家庭總收入一家庭總支出),如圖所示,則下列說法錯誤的是( )

A. 2017年2月份市居國民的平均家庭凈收入最低

B. 2017年4,5,6月份市居民的平均家庭凈收入比7、8、9月份的平均家庭凈收入波動小

C. 2017年有3個月市居民的平均家庭凈收入低于4000元

D. 2017年9、10、11、12月份平均家庭凈收入持續(xù)降低

【答案】D

【解析】

2017A市居民平均家庭凈收入走勢圖觀察可得A,B,C正確,D錯誤.

由2017年市居民平均家庭凈收入走勢圖可得2月份市居國民的平均家庭凈收入最低,故A正確;

由2017年市居民平均家庭凈收入走勢圖可得4,5,6月份市居民的平均家庭凈收入為6000,5000,5500,7、8、9月份的平均家庭凈收入為6800,3100,6600,故B正確;

2017年市居民平均家庭凈收入走勢圖可得1,2,8月份的市居民的平均家庭凈收入低于4000元,故C正確;

2017年9、10、11、12月份平均家庭凈收入呈現(xiàn)先降后升再降,故D錯誤.

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知滿足約束條件,若目標函數(shù)的最小值為-5,則的最大值為( )

A. 2B. 3

C. 4D. 5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求曲線的普通方程和直線的直角坐標方程;

(2)若曲線與直線交于兩點,點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:①成立的必要不充分條件②命題,則的否命題是:,則;③命題,使得的否定是:,均有④如果命題與命題都是真命題,那么命題一定是真命題;其中為真命題的個數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,底面ABCD是邊長為3的正方形,EFG分別是棱ABPBPC的中點,,.

(Ⅰ)求證:平面EFG∥平面PAD;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,明朝科學家徐光啟在《農政全書》中用圖畫描繪了筒車的工作原理(如圖1).因其經濟又環(huán)保,至今還在農業(yè)生產中得到使用(如圖2).假定在水流量穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運動.因筒車上盛水筒的運動具有周期性,可以考慮利用三角函數(shù)模型刻畫盛水筒(視為質點)的運動規(guī)律.將筒車抽象為一個幾何圖形,建立直角坐標系(如圖3).設經過t秒后,筒車上的某個盛水筒從點P0運動到點P.由筒車的工作原理可知,這個盛水筒距離水面的高度H(單位: ),由以下量所決定:筒車轉輪的中心O到水面的距離h,筒車的半徑r,筒車轉動的角速度ω(單位: ),盛水筒的初始位置P0以及所經過的時間t(單位: ).已知r=3,h=2,筒車每分鐘轉動(按逆時針方向)1.5圈, P0距離水面的高度為3.5,若盛水筒M從點P0開始計算時間,則至少需要經過_______就可到達最高點;若將點距離水面的高度表示為時間的函數(shù),則此函數(shù)表達式為_________

1 2 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電力公司在工程招標中是根據(jù)技術、商務、報價三項評分標準進行綜合評分的,按照綜合得分的高低進行綜合排序,綜合排序高者中標.

分值權重表如下:

總分

技術

商務

報價

100%

50%

10%

40%

技術標、商務標基本都是由公司的技術、資質、資信等實力來決定的.報價表則相對靈活,報價標的評分方法是:基準價的基準分是68分,若報價每高于基準價1%,則在基準分的基礎上扣0.8分,最低得分48分;若報價每低于基準價1%,則在基準分的基礎上加0.8分,最高得分為80分.若報價低于基準價15%以上(不含15%)每再低1%,在80分在基礎上扣0.8分.

在某次招標中,若基準價為1000(萬元).甲、乙兩公司綜合得分如下表:

公司

技術

商務

報價

80分

90分

A甲分

70分

100分

A乙分

甲公司報價為1100(萬元),乙公司的報價為800(萬元)則甲,乙公司的綜合得分,分別是( 。

A. 73,75.4B. 73,80C. 74.6,76D. 74.6,75.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A,B分別是雙曲線的左右頂點,設過的直線PA,PB與雙曲線分別交于點M,N,直線MNx軸于點Q,過Q的直線交雙曲線的于S,T兩點,且,則的面積( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1是由菱形,平行四邊形和矩形組成的一個平面圖形,其中,,,,將其沿,折起使得重合,如圖2

1)證明:圖2中的平面平面;

2)求圖2中點到平面的距離;

3)求圖2中二面角的余弦值.

查看答案和解析>>

同步練習冊答案