【題目】在直角坐標(biāo)系中中,曲線C的參數(shù)方程為參數(shù),.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

1)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)P到直線的距離的最大值;

2)若曲線C上所有的點(diǎn)均在直線的右下方,求t的取值范圍.

【答案】1;(2.

【解析】

1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程直角坐標(biāo)方程和極坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.

2)因?yàn)榍上的所有點(diǎn)均在直線的右下方,所以:對(duì)恒成立,利用輔助角公式變形可得恒成立,由余弦函數(shù)的有界性,只需即可,解得參數(shù)的取值范圍.

解:(1)直線的極坐標(biāo)方程為

轉(zhuǎn)換為直角坐標(biāo)方程為:

依題意,設(shè)

則點(diǎn)到直線的距離

當(dāng)時(shí),

2)因?yàn)榍上的所有點(diǎn)均在直線的右下方,

所以:對(duì),恒成立,

即:恒成立,

所以:

,

解得:

取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0)的一個(gè)頂點(diǎn)坐標(biāo)為A0,﹣1),離心率為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線y=kx1)(k0)與橢圓C交于不同的兩點(diǎn)PQ,線段PQ的中點(diǎn)為M,點(diǎn)B1,0),求證:點(diǎn)M不在以AB為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定數(shù)列,記該數(shù)列前項(xiàng)中的最大項(xiàng)為,該數(shù)列后項(xiàng), …..,中的最小項(xiàng)為.

1)對(duì)于數(shù)列:3,4,7,1,求出相應(yīng)的,;

2是數(shù)列的前項(xiàng)和,若對(duì)任意,有,其中,

①設(shè),判斷數(shù)列是否為等比數(shù)列;

②若數(shù)列對(duì)應(yīng)的滿足:對(duì)任意的正整數(shù)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線.

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請(qǐng)根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響.

身高較矮

身高較高

合計(jì)

體重較輕

體重較重

合計(jì)

(Ⅱ)①從上述32名男體育特長生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:

編號(hào)

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求(解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);

編號(hào)

1

2

3

4

5

6

7

8

體重(kg

57

58

53

61

66

57

50

66

殘差

②通過殘差分析,對(duì)于殘差的最大(絕對(duì)值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請(qǐng)?jiān)谛∶魉愕幕A(chǔ)上求出男體育特長生的身高與體重的線性回歸方程.

參考數(shù)據(jù):

,,,,

參考公式:,,,,

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為為參數(shù),),曲線的極坐標(biāo)方程為,點(diǎn)的一個(gè)交點(diǎn),其極坐標(biāo)為.設(shè)射線與曲線相交于,兩點(diǎn),與曲線相交于,兩點(diǎn).

1)求的值;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實(shí)現(xiàn)2020年全面建設(shè)小康社會(huì),某地進(jìn)行產(chǎn)業(yè)的升級(jí)改造.經(jīng)市場調(diào)研和科學(xué)研判,準(zhǔn)備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個(gè)核心部件,目前只有甲、乙兩種設(shè)備可以獨(dú)立生產(chǎn)該部件.如圖是從甲設(shè)備生產(chǎn)的部件中隨機(jī)抽取400件,對(duì)其核心部件的尺寸x,進(jìn)行統(tǒng)計(jì)整理的頻率分布直方圖.

根據(jù)行業(yè)質(zhì)量標(biāo)準(zhǔn)規(guī)定,該核心部件尺寸x滿足:|x12|≤1為一級(jí)品,1<|x12|≤2為二級(jí)品,|x12|>2為三級(jí)品.

(Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再從所抽取的40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望;

(Ⅱ)將甲設(shè)備生產(chǎn)的產(chǎn)品成箱包裝出售時(shí),需要進(jìn)行檢驗(yàn).已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗(yàn)費(fèi)用為50.檢驗(yàn)規(guī)定:若檢驗(yàn)出三級(jí)品需更換為一級(jí)或二級(jí)品;若不檢驗(yàn),讓三級(jí)品進(jìn)入買家,廠家需向買家每件支付200元補(bǔ)償.現(xiàn)從一箱產(chǎn)品中隨機(jī)抽檢了10件,結(jié)果發(fā)現(xiàn)有1件三級(jí)品.若將甲設(shè)備的樣本頻率作為總體的慨率,以廠家支付費(fèi)用作為決策依據(jù),問是否對(duì)該箱中剩余產(chǎn)品進(jìn)行一一檢驗(yàn)?請(qǐng)說明理由;

(Ⅲ)為加大升級(jí)力度,廠家需增購設(shè)備.已知這種產(chǎn)品的利潤如下:一級(jí)品的利潤為500元/件;二級(jí)品的利潤為400元/件;三級(jí)品的利潤為200元/件.乙種設(shè)備產(chǎn)品中一、二、三級(jí)品的概率分別是,,.若將甲設(shè)備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據(jù).應(yīng)選購哪種設(shè)備?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;

2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn),且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:

①點(diǎn)的極角;

面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長為2,平面過正方體的一個(gè)頂點(diǎn),且與正方體每條棱所在直線所成的角相等,則該正方體在平面內(nèi)的正投影面積是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案