分析 (1)利用兩個(gè)向量的數(shù)量積公式,三角恒等變換,化簡(jiǎn)函數(shù)的解析式,利用正弦函數(shù)的周期性以及最值,從而求得函數(shù)f(x)的最小正周期及f(x)的最大值.
(2)利用余弦定理以及基本不等式,求得三角形ABC面積的最大值.
解答 解:(1)易得$\overrightarrow a=(-sinx,cosx)$,
則f(x)=$\overrightarrow a•\overrightarrow b={sin^2}x+\sqrt{3}sinxcosx$=$\frac{1}{2}$-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$.
∴f(x)的最小正周期T=$\frac{2π}{2}$=π,當(dāng)$2x-\frac{π}{6}=\frac{π}{2}+2kπ,k∈Z$時(shí),
即$x=\frac{π}{3}+kπ,(k∈Z)$,f(x)取最大值$\frac{3}{2}$.
(2)銳角三角形ABC中,∵f($\frac{A}{2}$)=sin(A-$\frac{π}{6}$)+$\frac{1}{2}$=1,
∴sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,∴A=$\frac{π}{3}$.
∵a2=b2+c2-2bccosA,∴12=b2+c2-bc,
∴b2+c2=12+bc≥2bc,∴bc≤12.(當(dāng)且僅當(dāng)b=c時(shí)等號(hào)成立)
∴S=$\frac{1}{2}$bc•sinA=$\frac{\sqrt{3}}{4}$bc≤3$\sqrt{3}$.
∴當(dāng)三角形ABC為等邊三解形時(shí)面積的取最大值是3$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積公式,三角恒等變換,正弦函數(shù)的周期性以及最值,余弦定理以及基本不等式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
班級(jí) | 1 | 2 | 3 | 4 | 5 |
數(shù)學(xué)(x分) | 111 | 113 | 119 | 125 | 127 |
物理(y分) | 92 | 93 | 96 | 99 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{2018}{2019}$ | C. | $\frac{2018}{2017}$ | D. | $\frac{2016}{2017}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com