精英家教網 > 高中數學 > 題目詳情

【題目】,函數.

(1)當時,求上的單調區(qū)間;

(2)設函數,當有兩個極值點時,總有,求實數的值.

【答案】(1)增區(qū)間是 ,減區(qū)間是;(2).

【解析】試題分析:(1)當時,求得,求導,令,則是減函數,從而上是減函數,進而得出上的極大值,即可得到最大值;(2)由題意得可知,則,從而得不等式可化為,對任意的恒成立.通過討論時,時,時的情況,即可得出結論.

試題解析:(1)當時,

,令,則

顯然在區(qū)間內是減函數,又,在區(qū)間內,總有

在區(qū)間內是減函數,又時,,

,此時單調遞增;

時,

,此時單調遞減;

在區(qū)間內的極大值也即最大值是

2)由題意,知,則

根據題意,方程有兩個不同的實根

,即,且

,由

其中,得

所以上式化為

,所以不等式可化為,對任意的恒成立.

,不等式恒成立,;

時,恒成立,

令函數

顯然內的減函數,當,

時,恒成立,即

,當,,即

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,AC=AA1=2,AB=BC=2 ,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點D.

(1)求證:BC1⊥平面AA1C1C;
(2)求二面角C1﹣AB﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某超市為了解端午節(jié)期間粽子的銷售量,對其所在銷售范圍內的1000名消費者在端午節(jié)期間的粽子購買量(單位:g)進行了問卷調查,得到如圖所示的頻率分布直方圖.

(Ⅰ)求頻率分布直方圖中a的值;

(Ⅱ)求這1000名消費者的棕子購買量在600g1400g的人數;

(Ⅲ)求這1000名消費者的人均粽子購買量(頻率分布直方圖中同一組的數據用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三條直線型公路,,在點處交匯,其中、的夾角都為,在公路上取一點,且km,過鋪設一直線型的管道,其中點上,點上(,足夠長),設km,km

1)求出,的關系式;

2)試確定,的位置,使得公路段與段的長度之和最。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;

(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量(單位:瓶)為多少時,的數學期望達到最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有人用三段論進行推理:“函數 的導函數 的零點即為函數的極值點,函數 的導函數的零點為 ,所以 是函數 的極值點 ”,上面的推理錯誤的是( )

A. 大前提 B. 小前提 C. 推理形式 D. 以上都是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3ax2bxc,x∈[-2,2]表示過原點的曲線,且在x=±1處的切線的傾斜角均為π,有以下命題:

f(x)的解析式為f(x)=x3-4x,x∈[-2,2].

f(x)的極值點有且只有一個.

f(x)的最大值與最小值之和等于零.

其中正確命題的序號為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是中國古代第一部數學專著,成于公元一世紀左右,系統(tǒng)總結了戰(zhàn)國、秦、漢時期的數學成就.其中《方田》一章中記載了計算弧田(弧田就是由圓弧和其所對弦所圍成弓形)的面積所用的經驗公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經驗公式計算所得弧田面積與其實際面積之間存在誤差.現有圓心角為,弦長為的弧田.其實際面積與按照上述經驗公式計算出弧田的面積之間的誤差為( )平方米.(其中,

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設△ABC面積的大小為S,且3 =2S.
(1)求sinA的值;
(2)若C= , =16,求AC.

查看答案和解析>>

同步練習冊答案