A. | $y=\root{3}{x^3}$ | B. | $y={(\sqrt{x})^2}$ | C. | $y=\sqrt{x^2}$ | D. | $y=\frac{x^2}{x}$ |
分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)法則也相同,即可判斷它們是同一函數(shù).
解答 解:對于A,函數(shù)y=$\root{3}{{x}^{3}}$=x(x∈R),與y=x(x∈R)的定義域相同,對應(yīng)法則也相同,是同一函數(shù);
對于B,函數(shù)y=${(\sqrt{x})}^{2}$=x(x≥0),與y=x(x∈R)的定義域不同,不是同一函數(shù);
對于C,函數(shù)y=$\sqrt{{x}^{2}}$=|x|(x∈R),與y=x(x∈R)的對應(yīng)法則不同,不是同一函數(shù);
對于D,函數(shù)y=$\frac{{x}^{2}}{x}$=x(x≠0),與y=x(x∈R)的定義域不同,不是同一函數(shù).
故選:A.
點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (0,$\frac{1}{2}$)∪(2,+∞) | C. | (0,$\frac{1}{8}$)∪($\frac{1}{2}$,2) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\frac{4}{5}\sqrt{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com