4.已知△ABC為正三角形且邊長為2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$等于2.

分析 根據(jù)條件可知,$|\overrightarrow{AB}|=|\overrightarrow{AC}|=2$,$<\overrightarrow{AB},\overrightarrow{AC}>=60°$,這樣進行數(shù)量積的計算即可求出$\overrightarrow{AB}•\overrightarrow{AC}$的值.

解答 解:如圖,
$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}||\overrightarrow{AC}|cos60°$=$2×2×\frac{1}{2}=2$.
故答案為:2.

點評 考查向量夾角的概念,向量數(shù)量積的計算公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).
(1)寫出a2、a3的值(只寫出結(jié)果),并求出數(shù)列{an}的通項公式;
(2)設(shè)${b_n}=\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+$$\frac{1}{{{a_{n+3}}}}+…+\frac{1}{{{a_{2n}}}}$,若對任意的正整數(shù)n,不等式${t^2}-2t+\frac{1}{6}>{b_n}$恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市從參加廣場活動的人員中隨機抽取了1000名,得到如下表:
市民參加廣場活動項目與性別列聯(lián)表
 廣場舞球、棋、牌總計
100200300
300400700
總計4006001000
(Ⅰ)能否有99.5%把握認為市民參加廣場活動的項目與性別有關(guān)?
(Ⅱ)以性別為標(biāo)準(zhǔn),用分層抽樣的方法在跳廣場舞的人員中抽取4人,再在這4人中隨機確定兩名做廣場舞管理,求這兩名管理是一男一女的概率.
附   參考公式和K2檢驗臨界值表:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d,
P(K2≥k 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在區(qū)間[-3,3]上的函數(shù)f(x)=2x+m滿足f(2)=6,在[-3,3]上隨機取一個實數(shù)x,則使得f(x)的值不小于4的概率為( 。
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知遞增的等比數(shù)列{an}的公比為q,其前n項和Sn<0,則(  )
A.a1<0,0<q<1B.a1<0,q>1C.a1>0,0<q<1D.a1>0,q>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線與圓${({x-2\sqrt{2}})^2}+{y^2}=\frac{8}{3}$相切,則該雙曲線的離心率為(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)是R上可導(dǎo)的增函數(shù),g(x)是R上可導(dǎo)的奇函數(shù),對?x1,x2∈R都有|g(x1)+g(x2)|≥|f(x1)+f(x2)|成立,等差數(shù)列{an}的前n項和為Sn,f(x)同時滿足下列兩件條件:f(a2-1)=1,f(a9-1)=-1,則S10的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)$y=sin({\frac{π}{3}x+\frac{π}{6}})$的圖象可由函數(shù)$y=cos\frac{π}{3}x$的圖象至少向右平移m(m>0)個單位長度得到,則m=( 。
A.1B.$\frac{1}{2}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距為4,左、右焦點分別為F1、F2,且C1與拋物線C2:y2=x的交點所在的直線經(jīng)過F2
(Ⅰ)求橢圓C1的方程;
(Ⅱ)分別過F1、F2作平行直線m、n,若直線m與C1交于A,B兩點,與拋物線C2無公共點,直線n與C1交于C,D兩點,其中點A,D在x軸上方,求四邊形AF1F2D的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案