19.已知遞增的等比數(shù)列{an}的公比為q,其前n項和Sn<0,則(  )
A.a1<0,0<q<1B.a1<0,q>1C.a1>0,0<q<1D.a1>0,q>1

分析 由等比數(shù)列{an}的前n項和Sn<0,可知a1<0,再由數(shù)列為遞增數(shù)列可得an+1>an,且|an|>|an+1|,求出q的范圍得答案.

解答 解:∵Sn<0,∴a1<0,
又?jǐn)?shù)列{an}為遞增等比數(shù)列,∴an+1>an,且|an|>|an+1|,
則-an>-an+1,即q=$\frac{-{a}_{n+1}}{-{a}_{n}}$∈(0,1),
∴a1<0,0<q<1.
故選:A.

點評 本題考查等比數(shù)列的前n項和,考查等比數(shù)列的性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy內(nèi),動點M(x,y)與兩定點(-2,0),(2,0)連線的斜率之積為-$\frac{1}{4}$.
(1)求動點M的軌跡C的方程;
(2)設(shè)點A(x1,y1),B(x2,y2)是軌跡C上相異的兩點.
(Ⅰ)過點A,B分別作拋物線y2=4$\sqrt{3}$x的切線l1,l2,l1與l2兩條切線相交于點$N({-\sqrt{3},t})$,證明:$\overrightarrow{NA}•\overrightarrow{NB}$=0;
(Ⅱ)若直線OA與直線OB的斜率之積為-$\frac{1}{4}$,證明:S△AOB為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題P:?x∈R,x2+2x-1≥0,則¬P是( 。
A.?x0∈R,x02+2x0-1<0B.?x∈R,x2+2x-1≤0
C.?x0∈R,x02+2x0-1≥0D.?x∈R,x2+2x-1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)α1=7.412,α2=-9.99,則α1,α2分別是第一、二象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ex-1+ax,a∈R.
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:ex-1≥x;
(3)求證:當(dāng)a≥-2時,?x∈[1,+∞),f(x)+lnx≥a+1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知△ABC為正三角形且邊長為2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,角A,B,C的對邊分別是a,b,c,已知$b=4\sqrt{5},c=5$,且B=2C,點D為邊BC上的一點,且CD=3,則△ADC的面積為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知$sin(A-B)=2{sin^2}(\frac{C}{2}-\frac{π}{4})$.
(1)求sinAcosB的值;
(2)若$\frac{a}=\frac{{2\sqrt{3}}}{3}$,求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若將函數(shù)$f(x)=cos({2x+\frac{π}{6}})$的圖象向左平移φ(φ>0)個單位,所得圖象關(guān)于原點對稱,則φ最小時,tanφ=( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案