6.設(shè)全集U=R,集合A={x|x≤-2或x≥3},B={x|x>1},則(∁UA)∪B=( 。
A.{x|x≥-2}B.{x|x>-2}C.{x|1<x<3}D.{x|1<x≤3}

分析 求出A的補(bǔ)集,從而求出其和B的并集即可.

解答 解:A={x|x≤-2或x≥3},
故∁UA={x|-2<x<3},又B={x|x>1},
則(∁UA)∪B={x|x>-2},
故選:B.

點(diǎn)評 本題考查了集合的運(yùn)算,考查補(bǔ)集,并集的定義,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)$z=\frac{1+ai}{2-i}$(i是虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)a的值為( 。
A.2B.$\frac{1}{2}$C.$-\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544,設(shè)ξ~N(1,σ2),且P(ξ≥3)=0.1587,在平面直角坐標(biāo)系xOy中,若圓x2+y22上有四個點(diǎn)到直線12x-5y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是(-13,13).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={x|x2<4},N={x|x<1},則M∩N=( 。
A.{x|-2<x<1}B.{x|x<-2}C.{x|x<1}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,已知$\frac{{4\sqrt{3}}}{3}{S_{△ABC}}={b^2}+{c^2}-{a^2}$,則角A=$\frac{π}{3}$(用弧度制表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問題時,發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…,該數(shù)列的特點(diǎn)是:前兩個數(shù)均為 1,從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.人們把這樣的一列數(shù)組成的數(shù)列{an}稱為斐波那契數(shù)列.則(a1a3+a2a4+a3a5+a4a6+a5a7+a6a8)-(a22+a32+a42+a52+a62+a72)=(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{{{x^2}-1}}{{lnx-a{x^2}}}(a∈$R).
(1)當(dāng)a=0時,求函數(shù) f(x)的單調(diào)區(qū)間;
(2)若對于任意x∈(1,e),不等式f(x)>1恒成立,求 a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知點(diǎn)P是橢圓$\frac{x^2}{8}+\frac{y^2}{4}=1$在第一象限上的動點(diǎn),過點(diǎn)P引圓x2+y2=4的兩條切線PA、PB,切點(diǎn)分別是A、B,直線AB與x軸、y軸分別交于點(diǎn)M、N,則△OMN面積的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某農(nóng)科所發(fā)現(xiàn),一中作物的年收獲量y(單位:kg)與它”相近“作物的株數(shù)x具有線性相關(guān)關(guān)系(所謂兩株作物”相近“是指它們的直線距離不超過1m),并分別記錄了相近作物的株數(shù)為1,2,3,5,6,7時,該作物的年收獲量的相關(guān)數(shù)據(jù)如下:
X123567
y605553464541
(Ⅰ)求該作物的年收獲量y關(guān)于它”相近“作物的株數(shù)x的線性回歸方程;
(Ⅱ)農(nóng)科所在如圖所示的正方形地塊的每個格點(diǎn)(指縱、橫直線的交叉點(diǎn))處都種了一株該作物,其中每一個小正方形的面積為1,若在所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.(注:年收獲量以線性回歸方程計算所得數(shù)據(jù)為依據(jù))
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計分別為$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊答案