14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2sin2πx,x∈[1,3]}\\{(x-2)^{3}-x+2,x∈(-∞,1)∪(3,+∞)}\end{array}\right.$,若存在x1、x2、…xn滿足$\frac{f({x}_{1})}{{x}_{1}-2}$=$\frac{f({x}_{2})}{{x}_{2}-2}$=…=$\frac{f({x}_{n})}{{x}_{n}-2}$=$\frac{1}{2}$,則x1+x2+…+xn的值為(  )
A.4B.6C.8D.10

分析 由題意函數(shù)f(x)的圖象關(guān)于點(diǎn)(2,0)對(duì)稱,函數(shù)f(x)與y=$\frac{1}{2}x-1$的圖象恰有個(gè)交點(diǎn),且這個(gè)交點(diǎn)關(guān)于(2,0)對(duì)稱,由此能求出x1+x2+…+xn的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{2sin2πx,x∈[1,3]}\\{(x-2)^{3}-x+2,x∈(-∞,1)∪(3,+∞)}\end{array}\right.$,
∴函數(shù)f(x)的圖象關(guān)于點(diǎn)(2,0)對(duì)稱,
結(jié)合圖象知:x1、x2、…xn滿足$\frac{f({x}_{1})}{{x}_{1}-2}$=$\frac{f({x}_{2})}{{x}_{2}-2}$=…=$\frac{f({x}_{n})}{{x}_{n}-2}$=$\frac{1}{2}$,
∴函數(shù)f(x)與y=$\frac{1}{2}x-1$的圖象恰有個(gè)交點(diǎn),且這個(gè)交點(diǎn)關(guān)于(2,0)對(duì)稱,
除去點(diǎn)(2,0),
故有x1+x2+…+xn=x1+x2+x3+x4=8.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某水泥廠銷售工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示:將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求未來(lái)3天內(nèi),連續(xù)2天日銷售量不低于8噸,另一天日銷售量低于8噸的概率;
(2)用X表示未來(lái)3天內(nèi)日銷售量不低于8噸的天數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.α,β為兩個(gè)不同的平面,m,n為兩條不同的直線,下列命題中正確的是①④(填上所有正確命題的序號(hào)).
①若α∥β,m?α,則m∥β;                
②若m∥α,n?α,則m∥n;
③若α⊥β,α∩β=n,m⊥n,則m⊥β;       
④若n⊥α,n⊥β,m⊥α,則m⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{a+1}{2}{x^2}+ax-1$,$g(x)=\frac{1}{2}(a-4){x^2}$,其中a≥1.
(Ⅰ)f(x)在(0,2)上的值域?yàn)椋╯,t),求a的取值范圍;
(Ⅱ)若a≥3,對(duì)于區(qū)間[2,3]上的任意兩個(gè)不相等的實(shí)數(shù)x1、x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)命題p:?x0∈(0,+∞),x0+$\frac{1}{{x}_{0}}$>3;命題q:?x∈(2,+∞),x2>2x,則下列命題為真的是(  )
A.p∧(¬q)B.(¬p)∧qC.p∧qD.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}中,a1=2,a2=4,設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)于任意的n>1,n∈N*,Sn+1+Sn-1=2(Sn+1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{n}{{2}^{{a}_{n}}}$,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)不等式組$\left\{\begin{array}{l}3x+y-10≥0\\ x+3y-6≤0\end{array}\right.$表示的平面區(qū)域?yàn)镈,若函數(shù)y=logax(a>1)的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(1,3]B.[3,+∞)C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知sin2a=2-2cos2a,則tana=0或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.(文)設(shè)F是雙曲線E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$右焦點(diǎn),$P(\frac{a^2}{c},\frac{{\sqrt{2}a}}{2})$為直線上一點(diǎn),直線垂直于x軸,垂足為M,若△PMF等腰三角形,則E的離心率為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案