18.若角α的終邊與角$\frac{π}{6}$的終邊關(guān)于直線y=x對(duì)稱,且α∈(-4π,-2π),則α=-$\frac{11π}{3}$,-$\frac{5π}{3}$.

分析 由題意可得α=$\frac{π}{3}$+2kπ,k∈Z,給k取值可得.

解答 解:∵角α的終邊與$\frac{π}{6}$的終邊關(guān)于直線y=x對(duì)稱,
∴角α的終邊在$\frac{π}{3}$的終邊上,
∴α=$\frac{π}{3}$+2kπ,k∈Z.
又∵α∈(-4π,-2π),
∴α=-$\frac{11π}{3}$,-$\frac{5π}{3}$,
故答案為:-$\frac{11π}{3}$,-$\frac{5π}{3}$

點(diǎn)評(píng) 本題考查終邊相同的角,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若A(-2,3),B(3,-2),C(1,m)三點(diǎn)共線,則m的值為(  )
A.$\frac{1}{2}$B.-1C.-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.曲線$\sqrt{2}$ρ=4sin(x+$\frac{π}{4}$)與曲線$\left\{\begin{array}{l}{x=\frac{1}{2}-\frac{\sqrt{2}}{2}t}\\{y=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$的位置關(guān)系是( 。
A.相交過圓心B.相交C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的漸近線方程為3x+2y=0,則a的值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知:$0<α<\frac{π}{2}<β<π,cos(β-\frac{π}{4})=\frac{1}{3}$,$sin(α+β)=\frac{4}{5}$.
(1)求sin2β的值;
(2)設(shè)函數(shù)f(x)=cosx-sinx,試求 f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.圓C:(x-2)2+y2=4,直線l1:y=$\sqrt{3}$x,l2:y=kx-1,若l1,l2被圓C所截得的弦的長(zhǎng)度之比為1:2,則k的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.滿足條件|z-i|+|z+i|=4的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡是(  )
A.一條直線B.兩條直線C.D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-a|-|x-4|(x∈R,a∈R)的值域?yàn)閇-3,3].
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若存在x0∈R,使得f(x0)≤2m-m2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的右焦點(diǎn)為(2,0).則此雙曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

同步練習(xí)冊(cè)答案