6.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的漸近線方程為3x+2y=0,則a的值為( 。
A.4B.3C.2D.1

分析 由雙曲線的漸近線方程代入即可求得a的值.

解答 解:由雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1焦點在x軸上,則雙曲線漸近線方程y=±$\frac{a}$x,即ay±bx=0,
由b=3,則a=2,
∴a的值為2,
故選C.

點評 本題考查雙曲線的標(biāo)準(zhǔn)方程,雙曲線的漸近線方程,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD=1,E為棱AD的中點,異面直線PA與CD所成的角為90°.
(Ⅰ)證明:CD⊥平面PAD;
(Ⅱ)若二面角P-CD-A的大小為45°,求幾何體C-PBE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線$y=\frac{π}{4}$與函數(shù)f(x)=tanωx(ω>0)圖象相交的相鄰兩點間距離為$\frac{π}{4}$,則$f(\frac{π}{4})$的值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知ω>0,A>0,a>0,0<φ<π,y=sinx 的圖象按照以下次序變換:①縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{ω}$;②向左移動φ 個單位;③向上移動a 個單位;④縱坐標(biāo)變?yōu)锳倍.得到y(tǒng)=3sin(2x-$\frac{π}{6}$)+1 的圖象,則A+a+ω+φ=$\frac{16}{3}$+$\frac{11}{12}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.等差數(shù)列{an}的前n項和為Sn,且$\frac{{S}_{6}}{{S}_{3}}$=4,則$\frac{{S}_{5}}{{S}_{6}}$=( 。
A.$\frac{9}{4}$B.$\frac{2}{3}$C.$\frac{25}{36}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x3+ax2+bx+1在x=-$\frac{2}{3}$與x=1時都取得極值
(1)求a,b的值;
(2)求過點(0,1)的f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若角α的終邊與角$\frac{π}{6}$的終邊關(guān)于直線y=x對稱,且α∈(-4π,-2π),則α=-$\frac{11π}{3}$,-$\frac{5π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}的前n項和為Sn,若2${\;}^{{a}_{2}}$•2${\;}^{{a}_{8}}$=256,則S9的值為( 。
A.64B.36C.72D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x}+1,x≤0}\\{|lnx|,x>0}\end{array}\right.$當(dāng)1<a<2時,關(guān)于x的方程f[f(x)]=a實數(shù)解的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案