11.設(shè)集合M={y|y=2sinx,x∈[-5,5]},N={x|y=log2(x-1)},則M∩N=(1,2].

分析 先分別求出集合A和B,由此利用交集定義能求出M∩N.

解答 解:∵集合M={y|y=2sinx,x∈[-5,5]}={y|-2≤y≤2},
N={x|y=log2(x-1)}={x|x>1},
∴M∩N={x|1<x≤2}=(1,2].
故答案為:(1,2].

點(diǎn)評 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC的內(nèi)角A、B、C的對邊分別是a、b、c,已知(a+b+c)(b+c-a)=bc,則角A的度數(shù)等于(  )
A.120°B.60°C.150°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.定義運(yùn)算$|{\begin{array}{l}a&b\\ c&d\end{array}}$|=ad-bc,則符合條件$|{\begin{array}{l}z&{1+2i}\\{1-2i}&{1-i}\end{array}}$|=0的復(fù)數(shù)$\overline z$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若三個(gè)數(shù)x1,x2,x3的平均數(shù)$\overline{x}$=40,標(biāo)準(zhǔn)差的平方為1,則樣本x1+$\overline{x}$,x2+$\overline{x}$,x3+$\overline{x}$的平均數(shù)是80,方差是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)y=x2-2mx+1在(-∞,1)上是單調(diào)遞減函數(shù),則實(shí)數(shù)m的取值范圍[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線3x-4y+1=0與3x-4y+7=0的距離為$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定圓C1:(x+1)2+y2=36及定圓C2:(x-1)2+y2=4,動(dòng)圓P與C1內(nèi)切,與C2外切,求動(dòng)圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)P是直線l:3x-y-2=0上任意一點(diǎn),過點(diǎn)P引圓(x+3)2+(y+1)2=1的切線,則切線長度的最小值為( 。
A.3B.$\sqrt{7}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.三角形ABC中,角A,B,C所對邊分別為a,b,c,已知b2+c2-a2=$\sqrt{3}$bc,且a=1,則三角形ABC外接圓面積為π.

查看答案和解析>>

同步練習(xí)冊答案