【題目】數(shù)列滿足對任意的恒成立,為其前項的和,且.
(1)求數(shù)列的通項;
(2)數(shù)列滿足,其中.
①證明:數(shù)列為等比數(shù)列;
②求集合.
【答案】(1) (2) ①見證明;②
【解析】
(1)設(shè)等差數(shù)列{an}的公差為d.根據(jù)a4=4,前8項和S8=36.可得數(shù)列{an}的通項公式;
(2)①設(shè)數(shù)列{bn}前n項的和為Bn.根據(jù)bn=Bn﹣Bn﹣1,數(shù)列{bn}滿足.建立關(guān)系即可求解;
②由,得,即.記,由①得,,
由,得cm=3cp>cp,所以m<p;設(shè)t=p﹣m(m,p,t∈N*),由,得.
討論整數(shù)成立情況即可;
(1)設(shè)等差數(shù)列的公差為,因為等差數(shù)列滿足,前8項和
,解得
所以數(shù)列的通項公式為
(2)①設(shè)數(shù)列的前項和為,由(1)及 得
上兩式相減,得到
=
所以
又,所以,滿足上式,
所以
當(dāng)時,
兩式相減,得, ,
所以 所以此數(shù)列為首項為1,公比為2的等比數(shù)列.
②由,得,即,∴.
令,顯然,此時變?yōu)?/span>,即,
當(dāng)時,,不符合題意;
當(dāng)時,,符合題意,此時;
當(dāng)時,,不符合題意;
當(dāng)時,,不符合題意;
當(dāng)時,,不符合題意;
下證當(dāng),時,方程:
∵
∴
∴,顯然,從而
當(dāng),時,方程沒有正整數(shù)解.
綜上所述:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實數(shù)m滿足使方程1,其中a>0為雙曲線:命題q:實數(shù)m滿足.
(1)若a=1且p∧q為真,求實數(shù)m的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為研究學(xué)生語言學(xué)科的學(xué)習(xí)情況,現(xiàn)對高二200名學(xué)生英語和語文某次考試成績進行抽樣分析. 將200名學(xué)生編號為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(單位:分)繪成折線圖如下:
(Ⅰ)若第一段抽取的學(xué)生編號是006,寫出第五段抽取的學(xué)生編號;
(Ⅱ)在這兩科成績差超過20分的學(xué)生中隨機抽取2人進行訪談,求2人成績均是語文成績高于英語成績的概率;
(Ⅲ)根據(jù)折線圖,比較該校高二年級學(xué)生的語文和英語兩科成績,寫出你的結(jié)論和理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) 部分圖象如圖所示.
(1)求的最小正周期及解析式;
(2)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,點是橢圓上的一個動點,當(dāng)直線的斜率等于時,軸.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為的直線與直線相交于點,試判斷以為直徑的圓是否過軸上的定點?若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,點A(2,y0)為拋物線上一點,且|AF|=4.
(1)求拋物線的方程;
(2)直線l:y=x+m與拋物線交于不同兩點P,Q,若,其中O為坐標原點,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點F與雙曲線的一個焦點重合,過焦點F的直線l交拋物線于A,B兩點.
(1)求拋物線C的方程;
(2)記拋物線C的準線與x軸的交點為N,試問是否存在常數(shù)λ∈R,使得且都成立?若存在,求出實數(shù)λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,,E是PC的中點,平面PAC⊥平面ABCD.
(1)證明:ED∥平面PAB;
(2)若,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com