分析 (1)對(duì)函數(shù)f(x)=x3-ax2-3x進(jìn)行求導(dǎo),轉(zhuǎn)化成f′(x)在[1,+∞)上恒有f′(x)≥0,求出參數(shù)a的取值范圍;
(2)先求導(dǎo),再根據(jù)f′(3)=0,求得a=5,再根據(jù)導(dǎo)數(shù)求出函數(shù)極值,和端點(diǎn)值,求出最值即可.
解答 解:(1)y=3x2-2ax-3,
∵f(x)在[1,+∞)上是增函數(shù),
∴f′(x)在[1,+∞)上恒有f′(x)≥0,
即3x2-2ax-3≥0在[1,+∞)上恒成立.
則必有$\frac{a}{3}$≤1且f′(1)=-2a≥0,
∴a≤0;
實(shí)數(shù)a的取值范圍是(-∞,0].
(2)∵f(x)=x3-ax2+3x.
∴f′(x)=3x2-2ax+3.
由題意有f′(3)=0,解得a=5,
故f(x)=x3-5x2+3x,
∴f′(x)=3x2-10x+3.
令 f′(x)=0,解得 x=3∈[2,4],x=$\frac{1}{3}$ (舍去),
易知f(x)在區(qū)間[2,3]上單調(diào)遞減,在[3,4]上單調(diào)遞增,
而f(2)=-6,f(4)=-4,f(3)=-9,
故f(x)在區(qū)間[2,4]上的最大值為-4,最小值為-9.
點(diǎn)評(píng) 本題考查函數(shù)與導(dǎo)函數(shù)的關(guān)系,函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,通過函數(shù)的導(dǎo)數(shù)求解函數(shù)極值,考查轉(zhuǎn)化思想與計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | t>10 | B. | t<10 | C. | t>30 | D. | t<30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com