分析 由正弦函數(shù)的單調(diào)性判斷(1);由余弦函數(shù)的對(duì)稱中心判斷(2);
由正切函數(shù)的對(duì)稱性判斷(3);運(yùn)用圖象的變換規(guī)律即可判斷(4).
解答 解:(1)函數(shù)$y=sin(2x+\frac{π}{3})在區(qū)間(-\frac{π}{3},\frac{π}{6})$不具單調(diào)性,故(1)錯(cuò)誤;
(2)x=$\frac{π}{6}$時(shí),cos($\frac{π}{6}$+$\frac{π}{3}$)=0,故函數(shù)$y=cos(x+\frac{π}{3})$的圖象關(guān)于點(diǎn)$(\frac{π}{6},0)$對(duì)稱,正確;
(3)x=$\frac{π}{6}$時(shí),y=tan($\frac{π}{6}$+$\frac{π}{3}$)不存在,故函數(shù)$y=tan(x+\frac{π}{3})$的圖象關(guān)于直線$x=\frac{π}{6}$成軸對(duì)稱錯(cuò)誤;
(4)把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=3sin2x的圖象,故正確.
故答案為:(2)(4).
點(diǎn)評(píng) 本題考查三角函數(shù)的圖象和性質(zhì),主要是對(duì)稱性和單調(diào)性,以及圖象平移,考查運(yùn)算化簡(jiǎn)能力,屬于中檔題和易錯(cuò)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{{\root{8}{x}}}$(x>0) | B. | $\frac{7}{{8\root{8}{x}}}$(x>0) | C. | $\frac{1}{{8\root{8}{x^7}}}$(x>0) | D. | $\frac{-1}{{8\root{8}{x}}}$(x>0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com