8.下列四個(gè)命題:
(1)函數(shù)$y=sin(2x+\frac{π}{3})在區(qū)間(-\frac{π}{3},\frac{π}{6})$內(nèi)單調(diào)遞增.
(2)函數(shù)$y=cos(x+\frac{π}{3})$的圖象關(guān)于點(diǎn)$(\frac{π}{6},0)$對(duì)稱.
(3)函數(shù)$y=tan(x+\frac{π}{3})$的圖象關(guān)于直線$x=\frac{π}{6}$成軸對(duì)稱.
(4)把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$得到函數(shù)y=3sin2x的圖象.
其中真命題的序號(hào)是(2)(4).

分析 由正弦函數(shù)的單調(diào)性判斷(1);由余弦函數(shù)的對(duì)稱中心判斷(2);
由正切函數(shù)的對(duì)稱性判斷(3);運(yùn)用圖象的變換規(guī)律即可判斷(4).

解答 解:(1)函數(shù)$y=sin(2x+\frac{π}{3})在區(qū)間(-\frac{π}{3},\frac{π}{6})$不具單調(diào)性,故(1)錯(cuò)誤;
(2)x=$\frac{π}{6}$時(shí),cos($\frac{π}{6}$+$\frac{π}{3}$)=0,故函數(shù)$y=cos(x+\frac{π}{3})$的圖象關(guān)于點(diǎn)$(\frac{π}{6},0)$對(duì)稱,正確;
(3)x=$\frac{π}{6}$時(shí),y=tan($\frac{π}{6}$+$\frac{π}{3}$)不存在,故函數(shù)$y=tan(x+\frac{π}{3})$的圖象關(guān)于直線$x=\frac{π}{6}$成軸對(duì)稱錯(cuò)誤;
(4)把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=3sin2x的圖象,故正確.
故答案為:(2)(4).

點(diǎn)評(píng) 本題考查三角函數(shù)的圖象和性質(zhì),主要是對(duì)稱性和單調(diào)性,以及圖象平移,考查運(yùn)算化簡(jiǎn)能力,屬于中檔題和易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ+1\\ y=sinθ\end{array}\right.$,(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y=-2\sqrt{3}+\sqrt{3}t\end{array}\right.$,(t為參數(shù)).
(1)求圓C的極坐標(biāo)方程;
(2)直線l與圓C交于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點(diǎn),求f(x)的單調(diào)區(qū)間及在[2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)i是虛數(shù)單位,若復(fù)數(shù)z滿足z(1+i)=(1-i),則復(fù)數(shù)z的模|z|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xlnx.
(1)過點(diǎn)A(-e-2,0)作函數(shù)y=f(x)圖象的切線,求切線方程.
(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\sqrt{x\sqrt{x\sqrt{x}}}$的導(dǎo)數(shù)是(  )
A.$\frac{1}{{\root{8}{x}}}$(x>0)B.$\frac{7}{{8\root{8}{x}}}$(x>0)C.$\frac{1}{{8\root{8}{x^7}}}$(x>0)D.$\frac{-1}{{8\root{8}{x}}}$(x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z滿足z•i=3-i,則在復(fù)平面內(nèi),其共軛復(fù)數(shù)$\overline{z}$對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$\overrightarrow{a}$=(4,2),$\overrightarrow$=(6,y),且$\overrightarrow{a}$∥$\overrightarrow$,則y=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+x-2lnx(x>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案