8.若曲線y=ax2+$\frac{x}$(a,b為常數(shù))過點P(2,-5),且該曲線在點P處的切線與直線2x-7y+3=0垂直,則a+b的值等于-3.

分析 由曲線y=ax2+$\frac{x}$(a,b為常數(shù))過點P(2,-5),且該曲線在點P處的切線與直線2x-7y+3=0垂直,可得y|x=2=-5,且y′|x=2=-$\frac{7}{2}$,解方程可得答案.

解答 解:∵直線2x-7y+3=0的斜率k=$\frac{2}{7}$,
∴切線的斜率為-$\frac{7}{2}$,
曲線y=ax2+$\frac{x}$(a,b為常數(shù))過點P(2,-5),且該曲線在點P處的切線與直線2x-7y+3=0垂直,
∴y′=2ax-$\frac{{x}^{2}}$,
∴$\left\{\begin{array}{l}{4a+\frac{2}=-5}\\{4a-\frac{4}=-\frac{7}{2}}\end{array}\right.$,
解得:a=-1,b=-2,
故a+b=-3,
故答案為:-3

點評 本題考查的知識點是利用導(dǎo)數(shù)研究曲線上某點切線方程,其中根據(jù)已知得到y(tǒng)|x=2=-5,且y′|x=2=-$\frac{7}{2}$,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知M是直線l:x=-1上的動點,點F的坐標是(1,0),過M的直線l′與l垂直,并且l′與線段MF的垂直平分線相交于點N
(Ⅰ)求點N的軌跡C的方程
(Ⅱ)設(shè)曲線C上的動點A關(guān)于x軸的對稱點為A′,點P的坐標為(2,0),直線AP與曲線C的另一個交點為B(B與A′不重合),直線P′H⊥A′B,垂足為H,是否存在一個定點Q,使得|QH|為定值?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=(x-1)2-1的值域為[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在數(shù)列{an}中,an-1=2an,若a5=4,則a4a5a6=64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題“對任意x∈R,都有f(x)≤0”的否定是(  )
A.對任意x∈R,都有f(x)>0B.存在x∈R,使f(x)>0
C.存在x∈R,使f(x)≥0D.對任意x∈R,都有f(x)≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(1)當(dāng)a=2時,求函數(shù)f(x)的極值;
(2)若對任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=2x2-2x-3有以下4個結(jié)論:
①定義域為R,
②遞增區(qū)間為[1,+∞)
③是非奇非偶函數(shù);
④值域是[$\frac{1}{16}$,∞).
其中正確的結(jié)論是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,|$\overrightarrow{c}$|=$\sqrt{19}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.60°B.45°C.30°D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(理)已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,且過點$(2,\sqrt{2})$.
(1)求橢圓的標準方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若${K_{AC}}•{K_{BD}}=-\frac{b^2}{a^2}$.
(i) 求$\overrightarrow{OA}•\overrightarrow{OB}$的最值;
(ii) 求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案