10.對于奇數(shù)n,求值:cos$\frac{nπ}{7}$-cos$\frac{2nπ}{7}$+cos$\frac{3nπ}{7}$.

分析 利用“和差化積”與“積化和差”公式即可得出.

解答 解:∵n=2k-1(k∈N*),∴$sin\frac{4nπ}{7}$-$sin\frac{3nπ}{7}$=0.
原式=$2cos\frac{2n}{7}πcos\frac{n}{7}π$-$cos\frac{2n}{7}π$
=$\frac{2cos\frac{2n}{7}πsin\frac{2n}{7}π-2sin\frac{n}{7}πcos\frac{2n}{7}π}{2sin\frac{n}{7}π}$
=$\frac{sin\frac{4nπ}{7}-(sin\frac{3nπ}{7}-sin\frac{nπ}{7})}{2sin\frac{nπ}{7}}$=$\frac{1}{2}$,

點評 本題考查了“和差化積”與“積化和差”公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.母線長為1的圓錐的側(cè)面展開圖的圓心角等于120°,則該圓錐的體積為( 。
A.$\frac{{2\sqrt{2}}}{81}π$B.$\frac{{4\sqrt{5}}}{81}π$C.$\frac{8}{81}π$D.$\frac{10}{81}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(1,f(1))處切線的斜率為1,則實數(shù)a的值為( 。
A.-$\frac{3}{4}$B.-1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列命題中,正確的是(  )
A.|$\overrightarrow{a}$|=1⇒$\overrightarrow{a}$=±1B.|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}$∥$\overrightarrow$⇒$\overrightarrow{a}$=$\overrightarrow$C.$\overrightarrow{a}$=$\overrightarrow$⇒$\overrightarrow{a}$∥$\overrightarrow$D.$\overrightarrow{a}$∥$\overrightarrow{0}$⇒|$\overrightarrow{a}$|=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知A,B,C是半徑為l的圓O上的三點,AB為圓O的直徑,P為圓O內(nèi)一點(含圓周),則$\overrightarrow{PA}$$•\overrightarrow{PB}$$+\overrightarrow{PB}$$•\overrightarrow{PC}$$+\overrightarrow{PC}$$•\overrightarrow{PA}$的取值范圍為[-$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在極坐標系中,求直線$θ=\frac{π}{4}(ρ∈R)$被曲線ρ=4sinθ所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.等比數(shù)列{an}的公比為-$\sqrt{2}$,則ln(a20172-ln(a20162=ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖所示,四邊形ABCD為菱形,AF=2,AF∥DE,DE⊥平面ABCD.
(1)求證:AC⊥平面BDE;
(2)當DE為何值時,直線AC∥平面BEF?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某手機廠商推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行打分,打分的頻數(shù)分布表如下:
女性用戶:
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2040805010
男性用戶:
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)4575906030
(Ⅰ)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大。ú灰笥嬎憔唧w值,給出結(jié)論即可);

(Ⅱ)分別求女性用戶評分的眾數(shù),男性用戶評分的中位數(shù);
(Ⅲ)如果評分不低于70分,就表示該用戶對手機“認可”,否則就表示“不認可”,完成下列2×2列聯(lián)表,并回答是否有95%的把握認為性別和對手機的“認可”有關;
女性用戶男性用戶合計
“認可”手機140180320
“不認可”手機60120180
合計200300500
P(K2≥x00.050.01
x03.8416.635
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

同步練習冊答案