分析 (1)曲線C的極坐標方程為ρsin2θ=mcosθ(m>0),即ρ2sin2θ=mρcosθ(m>0),利用互化公式可得直角坐標方程.過點P(-2,-4)且傾斜角為$\frac{π}{4}$的直線l參數(shù)方程為:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).相減消去參數(shù)化為普通方程.
(2)把直線l的方程代入曲線C的方程為:t2-$\sqrt{2}$(m+8)t+4(m+8)=0.由于|AP|•|BP|=|BA|2,可得|t1•t2|=$({t}_{1}-{t}_{2})^{2}$,化為:5t1•t2=$({t}_{1}+{t}_{2})^{2}$,利用根與系數(shù)的關(guān)系即可得出.
解答 解:(1)曲線C的極坐標方程為ρsin2θ=mcosθ(m>0),即ρ2sin2θ=mρcosθ(m>0),可得直角坐標方程:
y2=mx(m>0).
過點P(-2,-4)且傾斜角為$\frac{π}{4}$的直線l參數(shù)方程為:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
消去參數(shù)化為普通方程:y=x-2.
(2)把直線l的方程代入曲線C的方程為:t2-$\sqrt{2}$(m+8)t+4(m+8)=0.
則t1+t2=$\sqrt{2}$(m+8),t1•t2=4(m+8).
∵|AP|•|BP|=|BA|2,∴|t1•t2|=$({t}_{1}-{t}_{2})^{2}$,化為:5t1•t2=$({t}_{1}+{t}_{2})^{2}$,
∴20(m+8)=2(m+8)2,m>0,解得m=2.
點評 本題考查了極坐標化為直角坐標方程、參數(shù)方程化為普通方程、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2+i | B. | 2-i | C. | -1+2i | D. | 1-2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -6 | C. | 15 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | (-1,0] | C. | (0,2) | D. | [0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2} | B. | {1} | C. | {-2,1} | D. | {-2,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com