13.已知α是第二象限角,且3sinα+4cosα=0,則tan$\frac{α}{2}$=(  )
A.2B.$\frac{1}{2}$C.-2D.-$\frac{1}{2}$

分析 由已知利用同角三角函數(shù)基本關系式可求tanα的值,利用二倍角的正切函數(shù)公式可得:2tan2$\frac{α}{2}$-3tan$\frac{α}{2}$-2=0,結合$\frac{α}{2}$的范圍,即可得解tan$\frac{α}{2}$的值.

解答 解:∵3sinα+4cosα=0,
∴3tanα+4=0,可得:tanα=-$\frac{4}{3}$=$\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$,整理可得:2tan2$\frac{α}{2}$-3tan$\frac{α}{2}$-2=0,
∴解得:tan$\frac{α}{2}$=2,或-$\frac{1}{2}$,
∵α是第二象限角,
∴kπ+$\frac{π}{4}$<$\frac{α}{2}$<kπ+$\frac{π}{2}$,k∈Z,
∴tan$\frac{α}{2}$>0,故tan$\frac{α}{2}$=2.
故選:A.

點評 本題主要考查了同角三角函數(shù)基本關系式,二倍角的正切函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.我國古代數(shù)學名著《九章算術》有“米谷粒分”題:糧倉開倉收糧,有人送來米1534石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為( 。
A.1365石B.338石C.169石D.134石

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知正三棱柱ABC-A1B1C1的側棱長與底面邊長相等,則AB1與側面ACC1A1所成角的正弦值等于$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設定義域為R的函數(shù)f(x)=$\left\{\begin{array}{l}{0}&{x=1}\\{|lg|x-1||}&{x≠1}\end{array}\right.$,則關于x的方程f2(x)+bf(x)+c=0有7個不同實數(shù)解的充要條件是( 。
A.b<0且c>0B.b>0且c<0C.b<0且c=0D.b>0且c=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=x2-ax($\frac{1}{e}$≤x≤e,e為自然對數(shù)的底數(shù))與g(x)=ex的圖象上存在關于直線y=x對稱的點,則實數(shù)a取值范圍是( 。
A.[1,e+$\frac{1}{e}$]B.[1,e-$\frac{1}{e}$]C.[e-$\frac{1}{e}$,e+$\frac{1}{e}$]D.[e-$\frac{1}{e}$,e]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若兩個球的體積之比為1:8,則這兩個球的表面積之比為( 。
A.1:2B.1:4C.1:8D.1:16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設M是△ABC邊BC上的任意一點,$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,若$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λ+μ=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線(實線和虛線)為某幾何體的三視圖,則該幾何體外接球的表面積為( 。
A.24πB.29πC.48πD.58π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若集合A={x|1≤3x≤81},B={x|log2(x2-x)>1},則A∩B=(2,4].

查看答案和解析>>

同步練習冊答案