6.函數(shù)y=$\frac{\sqrt{x+4}}{x+2}$的定義域為(  )
A.[-4,+∞)B.(-2,+∞)C.[-4,-2)D.[-4,-2)∪(-2,+∞)

分析 根據(jù)二次根式的性質(zhì)以及分母不為0,求出函數(shù)的定義域即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{x+4≥0}\\{x+2≠0}\end{array}\right.$,
解得:x≥-4或x≠-2,
故選:D.

點評 本題考查了求函數(shù)的定義域問題,考查二次根式的性質(zhì),是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)y=x-1在區(qū)間[1,2]上的最大值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列結(jié)論判斷正確的是( 。
A.棱長為1的正方體的內(nèi)切球的表面積為4π
B.三條平行直線最多確定三個平面
C.正方體ABCD-A1B1C1D1中,AB與C1D1異面
D.若平面α⊥平面β,平面β⊥平面γ,則平面α∥平面γ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的右焦點為F,右頂點為A,離心率為e,點P(m,0)(m>4)滿足條件|FA|=|AP|•e.
(Ⅰ)求m的值;
(Ⅱ)設(shè)過點F的直線l與橢圓C相交于M,N兩點,求證:∠MPF=∠NPF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)對于任意x,y∈R,總有f(x)+f(y)=f(x+y),且x>0時,f(x)<0.
(1)求證:f(x)在R上是奇函數(shù);
(2)求證:f(x)在R上是減函數(shù);
(3)若f(1)=-$\frac{2}{3}$,求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=log${\;}_{\frac{2}{3}}}$(x2-2x-3),給定區(qū)間E,對任意x1,x2∈E,當x1<x2時,總有f(x1)<f(x2),則下列區(qū)間可作為E的是( 。
A.(-3,-1)B.(-1,0)C.(1,2)D.(3,6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知p:|1-$\frac{x-1}{3}$|≥2,q:x2-2x+1-m2≥0(m>0),若¬p是¬q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知數(shù)列{an}是等比數(shù)列,且a2=-$\frac{1}{4}$,a5=2,則{an}的公比q為( 。
A.$-\root{3}{2}$B.$-\frac{1}{2}$C.-2D.$-\root{3}{0.5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知命題p:函數(shù)y=log0.5(x2+2x+a)的值域R,命題q:函數(shù)y=x2a-5在(0,+∞)上是減函數(shù).若p或q為真命題,p且q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案